7,077 research outputs found

    Past, Present And Future Implications Of Human Supervisory Control In Space Missions

    Get PDF
    Achieving the United States’ Vision for future Space Exploration will necessitate far greater collaboration between humans and automated technology than previous space initiatives. However, the development of methodologies to optimize this collaboration currently lags behind development of the technologies themselves, thus potentially decreasing mission safety, efficiency and probability of success. This paper discusses the human supervisory control (HSC) implications for use in space, and outlines several areas of current automated space technology in which the function allocation between humans and machines/automation is sub-optimal or under dispute, including automated spacecraft landings, Mission Control, and wearable extra-vehicular activity computers. Based on these case studies, we show that a more robust HSC research program will be crucial to achieving the Vision for Space Exploration, especially given the limited resources under which it must be accomplished

    Cognition in Space Workshop

    Get PDF
    "Cognition in Space Workshop I: Metrics and Models" was the first in a series of workshops sponsored by NASA to develop an integrated research and development plan supporting human cognition in space exploration. The workshop was held in Chandler, Arizona, October 25-27, 2004. The participants represented academia, government agencies, and medical centers. This workshop addressed the following goal of the NASA Human System Integration Program for Exploration: to develop a program to manage risks due to human performance and human error, specifically ones tied to cognition. Risks range from catastrophic error to degradation of efficiency and failure to accomplish mission goals. Cognition itself includes memory, decision making, initiation of motor responses, sensation, and perception. Four subgoals were also defined at the workshop as follows: (1) NASA needs to develop a human-centered design process that incorporates standards for human cognition, human performance, and assessment of human interfaces; (2) NASA needs to identify and assess factors that increase risks associated with cognition; (3) NASA needs to predict risks associated with cognition; and (4) NASA needs to mitigate risk, both prior to actual missions and in real time. This report develops the material relating to these four subgoals

    Tailoring a psychophysiologically driven rating system

    Get PDF
    Humans have always been interested in ways to measure and compare their performances to establish who is best at a particular activity. The first Olympic Games, for instance, were carried out in 776 BC, and it was a defining moment in history where ranking based competitive activities managed to reach the general populous. Every competition must face the issue of how to evaluate and rank competitors, and often rules are required to account for many different aspects such as variations in conditions, the ability to cheat, and, of course, the value of entertainment. Nowadays, measurements are performed out through various rating systems, which considers the outcomes of the activity to rate the participants. However, they do not seem to address the psychological aspects of an individual in a competition. This dissertation employs several psychophysiological assessment instruments intending to facilitate the acquisition of skill level rating in competitive gaming. To do so, an exergame that uses non-conventional inputs, such as body tracking to prevent input biases, was developed. The sample size of this study is ten, and the participants were put on a round-robin tournament to provide equal intervals between games for each player. After analyzing the outcome of the competition, it revealed some critical insights on the psychophysiological instruments; Especially the significance of Flow in terms of the prolificacy of a player. Although the findings did not provide an alternative for the traditional rating systems, it shows the importance of considering other aspects of the competition, such as psychophysiological metrics to fine-tune the rating. These potentially reveal more in-depth insight into the competition in comparison to just the binary outcome

    Contextual Bandit Modeling for Dynamic Runtime Control in Computer Systems

    Get PDF
    Modern operating systems and microarchitectures provide a myriad of mechanisms for monitoring and affecting system operation and resource utilization at runtime. Dynamic runtime control of these mechanisms can tailor system operation to the characteristics and behavior of the current workload, resulting in improved performance. However, developing effective models for system control can be challenging. Existing methods often require extensive manual effort, computation time, and domain knowledge to identify relevant low-level performance metrics, relate low-level performance metrics and high-level control decisions to workload performance, and to evaluate the resulting control models. This dissertation develops a general framework, based on the contextual bandit, for describing and learning effective models for runtime system control. Random profiling is used to characterize the relationship between workload behavior, system configuration, and performance. The framework is evaluated in the context of two applications of progressive complexity; first, the selection of paging modes (Shadow Paging, Hardware-Assisted Page) in the Xen virtual machine memory manager; second, the utilization of hardware memory prefetching for multi-core, multi-tenant workloads with cross-core contention for shared memory resources, such as the last-level cache and memory bandwidth. The resulting models for both applications are competitive in comparison to existing runtime control approaches. For paging mode selection, the resulting model provides equivalent performance to the state of the art while substantially reducing the computation requirements of profiling. For hardware memory prefetcher utilization, the resulting models are the first to provide dynamic control for hardware prefetchers using workload statistics. Finally, a correlation-based feature selection method is evaluated for identifying relevant low-level performance metrics related to hardware memory prefetching

    EIE: Efficient Inference Engine on Compressed Deep Neural Network

    Full text link
    State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power. Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120x energy saving; Exploiting sparsity saves 10x; Weight sharing gives 8x; Skipping zero activations from ReLU saves another 3x. Evaluated on nine DNN benchmarks, EIE is 189x and 13x faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102GOPS/s working directly on a compressed network, corresponding to 3TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88x10^4 frames/sec with a power dissipation of only 600mW. It is 24,000x and 3,400x more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9x, 19x and 3x better throughput, energy efficiency and area efficiency.Comment: External Links: TheNextPlatform: http://goo.gl/f7qX0L ; O'Reilly: https://goo.gl/Id1HNT ; Hacker News: https://goo.gl/KM72SV ; Embedded-vision: http://goo.gl/joQNg8 ; Talk at NVIDIA GTC'16: http://goo.gl/6wJYvn ; Talk at Embedded Vision Summit: https://goo.gl/7abFNe ; Talk at Stanford University: https://goo.gl/6lwuer. Published as a conference paper in ISCA 201

    Leadership development programme: a multi-method evaluation

    Get PDF
    This report investigates findings arising from a variety of forms of feedback provided by the first cohort of participants (2012-2013) in Cumbria Partnership Foundation Trust’s “Leadership Development” Programme (LDP). The report summarises both quantitative and qualitative feedback, and synthesises findings to provide a more three-dimensional overview of participant experience and systemic impact. Feedback reflects, throughout, the diversity of the participating cohort in terms of professional roles and levels of seniority
    • …
    corecore