1,462 research outputs found

    Risk and threat mitigation techniques in internet of things (IoT) environments: a survey

    Get PDF
    Security in the Internet of Things (IoT) remains a predominant area of concern. Although several other surveys have been published on this topic in recent years, the broad spectrum that this area aims to cover, the rapid developments and the variety of concerns make it impossible to cover the topic adequately. This survey updates the state of the art covered in previous surveys and focuses on defences and mitigations against threats rather than on the threats alone, an area that is less extensively covered by other surveys. This survey has collated current research considering the dynamicity of the IoT environment, a topic missed in other surveys and warrants particular attention. To consider the IoT mobility, a life-cycle approach is adopted to the study of dynamic and mobile IoT environments and means of deploying defences against malicious actors aiming to compromise an IoT network and to evolve their attack laterally within it and from it. This survey takes a more comprehensive and detailed step by analysing a broad variety of methods for accomplishing each of the mitigation steps, presenting these uniquely by introducing a “defence-in-depth” approach that could significantly slow down the progress of an attack in the dynamic IoT environment. This survey sheds a light on leveraging redundancy as an inherent nature of multi-sensor IoT applications, to improve integrity and recovery. This study highlights the challenges of each mitigation step, emphasises novel perspectives, and reconnects the discussed mitigation steps to the ground principles they seek to implement

    Microcredentials to support PBL

    Get PDF

    How I met your V2X sensor data : analysis of projection-based light field visualization for vehicle-to-everything communication protocols and use cases

    Get PDF
    The practical usage of V2X communication protocols started emerging in recent years. Data built on sensor information are displayed via onboard units and smart devices. However, perceptually obtaining such data may be counterproductive in terms of visual attention, particularly in the case of safety-related applications. Using the windshield as a display may solve this issue, but switching between 2D information and the 3D reality of traffic may introduce issues of its own. To overcome such difficulties, automotive light field visualization is introduced. In this paper, we investigate the visualization of V2X communication protocols and use cases via projection-based light field technology. Our work is motivated by the abundance of V2X sensor data, the low latency of V2X data transfer, the availability of automotive light field prototypes, the prevalent dominance of non-autonomous and non-remote driving, and the lack of V2X-based light field solutions. As our primary contributions, we provide a comprehensive technological review of light field and V2X communication, a set of recommendations for design and implementation, an extensive discussion and implication analysis, the exploration of utilization based on standardized protocols, and use-case-specific considerations

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Digital agriculture: research, development and innovation in production chains.

    Get PDF
    Digital transformation in the field towards sustainable and smart agriculture. Digital agriculture: definitions and technologies. Agroenvironmental modeling and the digital transformation of agriculture. Geotechnologies in digital agriculture. Scientific computing in agriculture. Computer vision applied to agriculture. Technologies developed in precision agriculture. Information engineering: contributions to digital agriculture. DIPN: a dictionary of the internal proteins nanoenvironments and their potential for transformation into agricultural assets. Applications of bioinformatics in agriculture. Genomics applied to climate change: biotechnology for digital agriculture. Innovation ecosystem in agriculture: Embrapa?s evolution and contributions. The law related to the digitization of agriculture. Innovating communication in the age of digital agriculture. Driving forces for Brazilian agriculture in the next decade: implications for digital agriculture. Challenges, trends and opportunities in digital agriculture in Brazil

    Efficient Security Protocols for Constrained Devices

    Get PDF
    During the last decades, more and more devices have been connected to the Internet.Today, there are more devices connected to the Internet than humans.An increasingly more common type of devices are cyber-physical devices.A device that interacts with its environment is called a cyber-physical device.Sensors that measure their environment and actuators that alter the physical environment are both cyber-physical devices.Devices connected to the Internet risk being compromised by threat actors such as hackers.Cyber-physical devices have become a preferred target for threat actors since the consequence of an intrusion disrupting or destroying a cyber-physical system can be severe.Cyber attacks against power and energy infrastructure have caused significant disruptions in recent years.Many cyber-physical devices are categorized as constrained devices.A constrained device is characterized by one or more of the following limitations: limited memory, a less powerful CPU, or a limited communication interface.Many constrained devices are also powered by a battery or energy harvesting, which limits the available energy budget.Devices must be efficient to make the most of the limited resources.Mitigating cyber attacks is a complex task, requiring technical and organizational measures.Constrained cyber-physical devices require efficient security mechanisms to avoid overloading the systems limited resources.In this thesis, we present research on efficient security protocols for constrained cyber-physical devices.We have implemented and evaluated two state-of-the-art protocols, OSCORE and Group OSCORE.These protocols allow end-to-end protection of CoAP messages in the presence of untrusted proxies.Next, we have performed a formal protocol verification of WirelessHART, a protocol for communications in an industrial control systems setting.In our work, we present a novel attack against the protocol.We have developed a novel architecture for industrial control systems utilizing the Digital Twin concept.Using a state synchronization protocol, we propagate state changes between the digital and physical twins.The Digital Twin can then monitor and manage devices.We have also designed a protocol for secure ownership transfer of constrained wireless devices. Our protocol allows the owner of a wireless sensor network to transfer control of the devices to a new owner.With a formal protocol verification, we can guarantee the security of both the old and new owners.Lastly, we have developed an efficient Private Stream Aggregation (PSA) protocol.PSA allows devices to send encrypted measurements to an aggregator.The aggregator can combine the encrypted measurements and calculate the decrypted sum of the measurements.No party will learn the measurement except the device that generated it

    Security and Privacy of Resource Constrained Devices

    Get PDF
    The thesis aims to present a comprehensive and holistic overview on cybersecurity and privacy & data protection aspects related to IoT resource-constrained devices. Chapter 1 introduces the current technical landscape by providing a working definition and architecture taxonomy of ‘Internet of Things’ and ‘resource-constrained devices’, coupled with a threat landscape where each specific attack is linked to a layer of the taxonomy. Chapter 2 lays down the theoretical foundations for an interdisciplinary approach and a unified, holistic vision of cybersecurity, safety and privacy justified by the ‘IoT revolution’ through the so-called infraethical perspective. Chapter 3 investigates whether and to what extent the fast-evolving European cybersecurity regulatory framework addresses the security challenges brought about by the IoT by allocating legal responsibilities to the right parties. Chapters 4 and 5 focus, on the other hand, on ‘privacy’ understood by proxy as to include EU data protection. In particular, Chapter 4 addresses three legal challenges brought about by the ubiquitous IoT data and metadata processing to EU privacy and data protection legal frameworks i.e., the ePrivacy Directive and the GDPR. Chapter 5 casts light on the risk management tool enshrined in EU data protection law, that is, Data Protection Impact Assessment (DPIA) and proposes an original DPIA methodology for connected devices, building on the CNIL (French data protection authority) model

    Improving approaches to material inventory management in construction industry in the UK

    Get PDF
    Materials used in construction constitute a major proportion of the total cost of construction projects. An important factor of great concern that adversely affects construction projects is the location and tracking of materials, which normally come in bulk with minimal identification. There is inadequate integration of modern wireless technologies (such as Radio Frequency Identification (RFID), Personal Digital Assistant (PDA) or Just-in-Time (JIT)) into project management systems for easier and faster materials management and tracking and to overcome human error. This research focuses on improving approaches to material inventory management in the UK construction industry through the formulation of RFID-based materials management tracking process system with projects. Existing literature review identified many challenges/problems in material inventory management on construction projects, such as supply delays, shortages, price fluctuations, wastage and damage, and insufficient storage space. Six construction projects were selected as exploratory case studies and cross-case analysis was used to investigate approaches to material inventory management practices: problems, implementation of ICT, and the potential for using emerging wireless technologies and systems (such as RFID and PDA) for materials tracking. Findings showed that there were similar problems of storage constraints and logistics with most of the construction projects. The synthesis of good practices required the implementation of RFID-facilitated construction management of materials tracking system to make material handling easier, quicker, more efficient and less paperwork. There was also a recommendation to implement Information and Communication Technology (ICT) tools to integrate plant, labour and materials into one system. The findings from the cases studies and the literature review were used to formulate a process for real-time material tracking using Radio Frequency Identification (RFID) that can improve material inventory management in the UK construction industry. Testing and validation undertaken assisted in formulating a process that can be useful, functional and acceptable for a possible process system’s development. Finally, research achievements/contributions to knowledge, and limitations were discussed and some suggestions for further research were outlined
    corecore