83,118 research outputs found

    VeriSFQ - A Semi-formal Verification Framework and Benchmark for Single Flux Quantum Technology

    Get PDF
    In this paper, we propose a semi-formal verification framework for single-flux quantum (SFQ) circuits called VeriSFQ, using the Universal Verification Methodology (UVM) standard. The considered SFQ technology is superconducting digital electronic devices that operate at cryogenic temperatures with active circuit elements called the Josephson junction, which operate at high switching speeds and low switching energy - allowing SFQ circuits to operate at frequencies over 300 gigahertz. Due to key differences between SFQ and CMOS logic, verification techniques for the former are not as advanced as the latter. Thus, it is crucial to develop efficient verification techniques as the complexity of SFQ circuits scales. The VeriSFQ framework focuses on verifying the key circuit and gate-level properties of SFQ logic: fanout, gate-level pipeline, path balancing, and input-to-output latency. The combinational circuits considered in analyzing the performance of VeriSFQ are: Kogge-Stone adders (KSA), array multipliers, integer dividers, and select ISCAS'85 combinational benchmark circuits. Methods of introducing bugs into SFQ circuit designs for verification detection were experimented with - including stuck-at faults, fanout errors, unbalanced paths, and functional bugs like incorrect logic gates. In addition, we propose an SFQ verification benchmark consisting of combinational SFQ circuits that exemplify SFQ logic properties and present the performance of the VeriSFQ framework on these benchmark circuits. The portability and reusability of the UVM standard allows the VeriSFQ framework to serve as a foundation for future SFQ semi-formal verification techniques.Comment: 7 pages, 6 figures, 4 tables; submitted, accepted, and presented at ISQED 2019 (20th International Symposium on Quality Electronic Design) on March 7th, 2019 in Santa Clara, CA, US

    Timed circuit verification using TEL structures

    Get PDF
    Journal ArticleAbstract-Recent design examples have shown that significant performance gains are realized when circuit designers are allowed to make aggressive timing assumptions. Circuit correctness in these aggressive styles is highly timing dependent and, in industry, they are typically designed by hand. In order to automate the process of designing and verifying timed circuits, algorithms for their synthesis and verification are necessary. This paper presents timed event/level (TEL) structures, a specification formalism for timed circuits that corresponds directly to gate-level circuits. It also presents an algorithm based on partially ordered sets to make the state-space exploration o f TEL structures more tractable. The combination of the new specification method and algorithm significantly improves efficiency for gate-level timing verification. Results on a number of circuits, including many from the recently published gigahertz unit Test Site (guTS) processor from IBM indicate that modules of significant size can be verified using a level of abstraction that preserves the interesting timing properties of the circuit. Accurate circuit level verification allows the designer to include less margin in the design, which can lead to increased performance

    Analog and Mixed Signal Verification using Satisfiability Solver on Discretized Models

    Full text link
    With increasing demand of performance constraints and the ever reducing size of the IC chips, analog and mixed-signal designs have become indispensable and increasingly complex in modern CMOS technologies. This has resulted in the rise of stochastic behavior in circuits, making it important to detect all the corner cases and verify the correct functionality of the design under all circumstances during the earlier stages of the design process. It can be achieved by functional or formal verification methods, which are still widely unexplored for Analog and Mixed-Signal (AMS) designs. Design Verification is a process to validate the performance of the system in accordance with desired specifications. Functional verification relies on simulating different combinations of inputs for maximum state space coverage. With the exponential increase in the complexity of circuits, traditional functional verification techniques are getting more and more inadequate in terms of exhaustiveness of the solution. Formal verification attempts to provide a mathematical proof for the correctness of the design regardless of the circumstances. Thus, it is possible to get 100% coverage using formal verification. However, it requires advanced mathematics knowledge and thus is not feasible for all applications. In this thesis, we present a technique for analog and mixed-signal verification targeting DC verification using Berkeley Short-channel Igfet Models (BSIM) for approximation. The verification problem is first defined using the state space equations for the given circuit and applying Satisfiability Modulo Theories (SMT) solver to determine a region that encloses complete DC equilibrium of the circuit. The technique is applied to an example circuit and the results are analyzed in turns of runtime effectiveness

    A fully digital power supply noise thermometer

    Get PDF
    Power Supply Noise (PSN) is one of the main concerns in scaled technology circuits, both if performance reliability must be assured and if power supply is to be dynamically reduced for dissipation regulation. In this paper we propose a new system for digitally sensing Power Supply and Ground levels that can be both transferred to the output for verification purposes and used by a control block within the circuit under test (CUT) for the activation of power aware policies. The sensor system shows very low overhead in terms of power and area, and works at the nominal CUT frequency. It allows to change on-site the Power Supply and Ground ranges to be sensed and, after a fine tuning, can be arranged for a process variation aware measures. This sensor is fully digital and standard cell based and can be used for every type of architecture on a systematic basis for PSN measure as scan chains are for fault verification. It thus represents a change of paradigm in the way in which PSN measure systems are thought nowaday

    Gaining confidence on the correct realization of arbitrary quantum computations

    Full text link
    We present verification protocols to gain confidence in the correct performance of the realization of an arbitrary universal quantum computation. The derivation of the protocols is based on the fact that matchgate computations, which are classically efficiently simulable, become universal if supplemented with additional resources. We combine tools from weak simulation, randomized compiling, and classical statistics to derive verification circuits. These circuits have the property that (i) they strongly resemble the original circuit and (ii) cannot only be classically efficiently simulated in the ideal, i.e. error free, scenario, but also in the realistic situation where errors are present. In fact, in one of the protocols we apply exactly the same circuit as in the original computation, however, to a slightly modified input state.Comment: 17 pages, 8 figure

    Relative timing

    Get PDF
    Journal ArticleAbstract-Relative timing (RT) is introduced as a method for asynchronous design. Timing requirements of a circuit are made explicit using relative timing. Timing can be directly added, removed, and optimized using this style. RT synthesis and verification are demonstrated on three example circuits, facilitating transformations from speed-independent circuits to burst-mode and pulse-mode circuits. Relative timing enables improved performance, area, power, and functional testability of up to a factor of 3x in all three cases. This method is the foundation of optimized timed circuit designs used in an industrial test chip, and may be formalized and automated

    Effect of Sensors on the Reliability and Control Performance of Power Circuits in the Web of Things (WoT)

    Get PDF
    In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype.This work was supported by the 2013 Yeungnam University Research Grant
    corecore