3,188 research outputs found

    Using Taint Analysis and Reinforcement Learning (TARL) to Repair Autonomous Robot Software

    Full text link
    It is important to be able to establish formal performance bounds for autonomous systems. However, formal verification techniques require a model of the environment in which the system operates; a challenge for autonomous systems, especially those expected to operate over longer timescales. This paper describes work in progress to automate the monitor and repair of ROS-based autonomous robot software written for an a-priori partially known and possibly incorrect environment model. A taint analysis method is used to automatically extract the data-flow sequence from input topic to publish topic, and instrument that code. A unique reinforcement learning approximation of MDP utility is calculated, an empirical and non-invasive characterization of the inherent objectives of the software designers. By comparing off-line (a-priori) utility with on-line (deployed system) utility, we show, using a small but real ROS example, that it's possible to monitor a performance criterion and relate violations of the criterion to parts of the software. The software is then patched using automated software repair techniques and evaluated against the original off-line utility.Comment: IEEE Workshop on Assured IEEE Workshop on Assured Autonomous Systems, May, 202

    The NASA/OAST telerobot testbed architecture

    Get PDF
    Through a phased development such as a laboratory-based research testbed, the NASA/OAST Telerobot Testbed provides an environment for system test and demonstration of the technology which will usefully complement, significantly enhance, or even replace manned space activities. By integrating advanced sensing, robotic manipulation and intelligent control under human-interactive supervision, the Testbed will ultimately demonstrate execution of a variety of generic tasks suggestive of space assembly, maintenance, repair, and telescience. The Testbed system features a hierarchical layered control structure compatible with the incorporation of evolving technologies as they become available. The Testbed system is physically implemented in a computing architecture which allows for ease of integration of these technologies while preserving the flexibility for test of a variety of man-machine modes. The development currently in progress on the functional and implementation architectures of the NASA/OAST Testbed and capabilities planned for the coming years are presented

    MAPmAKER: performing multi-robot LTL planning under uncertainty

    Get PDF
    Robot applications are being increasingly used in real life to help humans performing dangerous, heavy, and/or monotonous tasks. They usually rely on planners that given a robot or a team of robots compute plans that specify how the robot(s) can fulfill their missions. Current robot applications ask for planners that make automated planning possible even when only partial knowledge about the environment in which the robots are deployed is available. To tackle such challenges we developed MAPmAKER, which provides a decentralized planning solution and is able to work in partially known environments. Decentralization is realized by decomposing the robotic team into subteams based on their missions, and then by running a classical planning algorithm. Partial knowledge is handled by calling several times a classical planning algorithm. Demo video available at: https://youtu.be/TJzC_u2yfzQ

    Optimal temporal logic control of autonomous vehicles

    Full text link
    Thesis (Ph.D.)--Boston UniversityTemporal logics, such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL), are extensions of propositional logic that can capture temporal relations. Even though temporal logics have been used in model checking of finite systems for quite some time, they have gained popularity as a means for specifying complex mission requirements in path planning and control synthesis problems only recently. This dissertation proposes and evaluates methods and algorithms for optimal path planning and control synthesis for autonomous vehicles where a high-level mission specification expressed in LTL (or a fragment of LTL) must be satisfied. In summary, after obtaining a discrete representation of the overall system, ideas and tools from formal verification and graph theory are leveraged to synthesize provably correct and optimal control strategies. The first part of this dissertation focuses on automatic planning of optimal paths for a group of robots that must satisfy a common high level mission specification. The effect of slight deviations in traveling times on the behavior of the team is analyzed and methods that are robust to bounded non-determinism in traveling times are proposed. The second part focuses on the case where a controllable agent is required to satisfy a high-level mission specification in the presence of other probabilistic agents that cannot be controlled. Efficient methods to synthesize control policies that maximize the probability of satisfaction of the mission specification are presented. The focus of the third part is the problem where an autonomous vehicle is required to satisfy a rich mission specification over service requests occurring at the regions of a partitioned environment. A receding horizon control strategy that makes use of the local information provided by the sensors on the vehicle in addition to the a priori information about the environment is presented. For all of the automatic planning and control synthesis problems that are considered, the proposed algorithms are implemented, evaluated, and validated through experiments and/or simulations

    Probabilistic Model Checking of Robots Deployed in Extreme Environments

    Get PDF
    Robots are increasingly used to carry out critical missions in extreme environments that are hazardous for humans. This requires a high degree of operational autonomy under uncertain conditions, and poses new challenges for assuring the robot's safety and reliability. In this paper, we develop a framework for probabilistic model checking on a layered Markov model to verify the safety and reliability requirements of such robots, both at pre-mission stage and during runtime. Two novel estimators based on conservative Bayesian inference and imprecise probability model with sets of priors are introduced to learn the unknown transition parameters from operational data. We demonstrate our approach using data from a real-world deployment of unmanned underwater vehicles in extreme environments.Comment: Version accepted at the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, 201
    • …
    corecore