88 research outputs found

    Resonation-based hybrid continuous-time/discrete-time cascade ΣΔ modulators: application to 4G wireless telecom

    Get PDF
    This paper presents innovative architectures of hybrid Continuous-Time/Discrete-Time (CT/DT) cascade ΣΔ Modulators (ΣΔMs) made up of a front-end CT stage and a back-end DT stage. In addition to increasing the digitized signal bandwidth as compared to conventional ΣΔMs, the proposed topologies take advantage of the CT nature of the front-end ΣΔM stage, by embedding anti-aliasing filtering as well as their suitability to operate up to the GHz range. Moreover, the presented modulators include multi-bit quantization and Unity Signal Transfer Function (USTF) in both stages to reduce the integrator output swings, and programmable resonation to optimally distribute the zeroes of the overall Noise Transfer Function (NTF), such that the in-band quantization noise is minimized for each operation mode. Both local and inter-stage (global) based resonation architectures are synthesized and compared in terms of their circuit complexity, resolution-bandwidth programmability and robustness with respect to circuit non-ideal effects. The combination of all mentioned characteristics results in novel hybrid ΣΔMs, very suited for the implementation of adaptive/reconfigurable Analog-to-Digital Converters (ADCs) intended for the 4th Generation (4G) of wireless telecom systems

    High Performance Integrated Circuit Blocks for High-IF Wideband Receivers

    Get PDF
    Due to the demand for high‐performance radio frequency (RF) integrated circuit design in the past years, a system‐on‐chip (SoC) that enables integration of analog and digital parts on the same die has become the trend of the microelectronics industry. As a result, a major requirement of the next generation of wireless devices is to support multiple standards in the same chip‐set. This would enable a single device to support multiple peripheral applications and services. Based on the aforementioned, the traditional superheterodyne front‐end architecture is not suitable for such applications as it would require a complete receiver for each standard to be supported. A more attractive alternative is the highintermediate frequency (IF) radio architecture. In this case the signal is digitalized at an intermediate frequency such as 200MHz. As a consequence, the baseband operations, such as down‐conversion and channel filtering, become more power and area efficient in the digital domain. Such architecture releases the specifications for most of the front‐end building blocks, but the linearity and dynamic range of the ADC become the bottlenecks in this system. The requirements of large bandwidth, high frequency and enough resolution make such ADC very difficult to realize. Many ADC architectures were analyzed and Continuous‐Time Bandpass Sigma‐Delta (CT‐BP‐ΣΔ) architecture was found to be the most suitable solution in the high‐IF receiver architecture since they combine oversampling and noise shaping to get fairly high resolution in a limited bandwidth. A major issue in continuous‐time networks is the lack of accuracy due to powervoltage‐ temperature (PVT) tolerances that lead to over 20% pole variations compared to their discrete‐time counterparts. An optimally tuned BP ΣΔ ADC requires correcting for center frequency deviations, excess loop delay, and DAC coefficients. Due to these undesirable effects, a calibration algorithm is necessary to compensate for these variations in order to achieve high SNR requirements as technology shrinks. In this work, a novel linearization technique for a Wideband Low‐Noise Amplifier (LNA) targeted for a frequency range of 3‐7GHz is presented. Post‐layout simulations show NF of 6.3dB, peak S21 of 6.1dB, and peak IIP3 of 21.3dBm, respectively. The power consumption of the LNA is 5.8mA from 2V. Secondly, the design of a CMOS 6th order CT BP‐ΣΔ modulator running at 800 MHz for High‐IF conversion of 10MHz bandwidth signals at 200 MHz is presented. A novel transconductance amplifier has been developed to achieve high linearity and high dynamic range at high frequencies. A 2‐bit quantizer with offset cancellation is alsopresented. The sixth‐order modulator is implemented using 0.18 um TSMC standard analog CMOS technology. Post‐layout simulations in cadence demonstrate that the modulator achieves a SNDR of 78 dB (~13 bit) performance over a 14MHz bandwidth. The modulator’s static power consumption is 107mW from a supply power of ± 0.9V. Finally, a calibration technique for the optimization of the Noise Transfer Function CT BP ΣΔ modulators is presented. The proposed technique employs two test tones applied at the input of the quantizer to evaluate the noise transfer function of the ADC, using the capabilities of the Digital Signal Processing (DSP) platform usually available in mixed‐mode systems. Once the ADC output bit stream is captured, necessary information to generate the control signals to tune the ADC parameters for best Signal‐to‐Quantization Noise Ratio (SQNR) performance is extracted via Least‐ Mean Squared (LMS) software‐based algorithm. Since the two tones are located outside the band of interest, the proposed global calibration approach can be used online with no significant effect on the in‐band content

    Tools for Automated Design of ΣΔ Modulators

    Get PDF
    We present a set of CAD tools to design ΣΔ modulators. They use statistical optimization to calculate optimum specifications for the building blocks used in the modulators, and optimum sizes for the components in these blocks. Optimization procedures at the modulator level are equation-based, while procedures at the cell level are simulation-based. The toolset incorporates also an advanced ΣΔ behavioral simulator for monitoring and design space exploration. We include measurements taken from two silicon prototypes: 1) a 17bit@40kHz output rate fourth-order low-pass modulator; and 2) a [email protected] central freq@10kHz bandwidth band-pass modulator. The first uses SC fully-differential circuits in a 1.2ÎŒm CMOS double-metal double-poly technology. The second uses SI fully-differential circuits in a 0.8ÎŒm CMOS double-metal single-poly technology.This work has been supported by the CEE ESPRIT Program in the framework of the Project #8795 (AMFIS).Peer reviewe

    Tools for Automated Design of ΣΔ Modulators

    Get PDF
    We present a set of CAD tools to design ΣΔ modulators. They use statistical optimization to calculate optimum specifications for the building blocks used in the modulators, and optimum sizes for the components in these blocks. Optimization procedures at the modulator level are equation-based, while procedures at the cell level are simulation-based. The toolset incorporates also an advanced ΣΔ behavioral simulator for monitoring and design space exploration. We include measurements taken from two silicon prototypes: 1) a 17bit@40kHz output rate fourth-order low-pass modulator; and 2) a [email protected] central freq@10kHz bandwidth band-pass modulator. The first uses SC fully-differential circuits in a 1.2ÎŒm CMOS double-metal double-poly technology. The second uses SI fully-differential circuits in a 0.8ÎŒm CMOS double-metal single-poly technology

    Filter Design Considerations for High Performance Continuous-Time Low-Pass Sigma-Delta ADC

    Get PDF
    Continuous-time filters are critical components in the implementation of large bandwidth, high frequency, and high resolution continuous-time (CT) sigma-delta (ΣΔ) analog-to-digital converters (ADCs). The loop filter defines the noise-transfer function (NTF) and hence the quantization noise-shaping behavior of the ΣΔ modulator, and becomes the most critical performance determining part in ΣΔ ADC. This thesis work presents the design considerations for the loop filter in low-pass CT ΣΔ ADC with 12-bits resolution in 25MHz bandwidth and low power consumption using 0.18ÎŒm CMOS technology. Continuous-time filters are more suitable than discrete-time filters due to relaxed amplifier bandwidth requirements for high frequency ΣΔ ADCs. A fifth-order low-pass filter with cut-off frequency of 25 MHz was designed to meet the dynamic range requirement of the ADC. An active RC topology was chosen for the implementation of the loop filter, which can provide high dynamic range required by the ΣΔ ADC. The design of a summing amplifier and a novel method for adjusting the group delay in the fast path provided by a secondary feedback DAC of the ΣΔ ADC are presented in detail. The ADC was fabricated using Jazz 0.18ÎŒm CMOS technology. The implementation issues of OTAs with high-linearity and low-noise performance suitable for the broadband ADC applications are also analyzed in this work. Important design equations pertaining to the linearity and noise performance of the Gm-C biquad filters are presented. A Gm-C biquad with 100MHz center frequency and quality factor 10 was designed as a prototype to confirm with the theoretical design equations. Transistor level circuit implementation of all the analog modules was completed in a standard 0.18ÎŒm CMOS process

    Bandpass electromechanical sigma-delta modulator

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Contribution to the design of continuous -time Sigma - Delta Modulators based on time delay elements

    Get PDF
    The research carried out in this thesis is focused in the development of a new class of data converters for digital radio. There are two main architectures for communication receivers which perform a digital demodulation. One of them is based on analog demodulation to the base band and digitization of the I/Q components. Another option is to digitize the band pass signal at the output of the IF stage using a bandpass Sigma-Delta modulator. Bandpass Sigma- Delta modulators can be implemented with discrete-time circuits, using switched capacitors or continuous-time circuits. The main innovation introduced in this work is the use of passive transmission lines in the loop filter of a bandpass continuous-time Sigma-Delta modulator instead of the conventional solution with gm-C or LC resonators. As long as transmission lines are used as replacement of a LC resonator in RF technology, it seems compelling that transmission lines could improve bandpass continuous-time Sigma-Delta modulators. The analysis of a Sigma- Delta modulator using distributed resonators has led to a completely new family of Sigma- Delta modulators which possess properties inherited both from continuous-time and discretetime Sigma-Delta modulators. In this thesis we present the basic theory and the practical design trade-offs of this new family of Sigma-Delta modulators. Three demonstration chips have been implemented to validate the theoretical developments. The first two are a proof of concept of the application of transmission lines to build lowpass and bandpass modulators. The third chip summarizes all the contributions of the thesis. It consists of a transmission line Sigma-Delta modulator which combines subsampling techniques, a mismatch insensitive circuitry and a quadrature architecture to implement the IF to digital stage of a receiver

    Efficient Continuous-Time Sigma-Delta Converters for High Frequency Applications

    Full text link
    Over the years Continuous-Time (CT) Sigma-Delta (ΣΔ) modulators have received a lot of attention due to their ability to efficiently digitize a variety of signals, and suitability for many different applications. Because of their tolerance to component mismatch, the easy to drive input structure, as well as intrinsic anti-aliasing filtering and noise shaping abilities, CTΣΔ modulators have become one of the most popular data-converter type for high dynamic range and moderate/wide bandwidth. This trend is the result of faster CMOS technologies along with design innovations such as better architectures and faster amplifiers. In other words, CTΣΔ modulators are starting to offer the best of both worlds, with high resolution and high bandwidth. This dissertation focuses on the bandwidth and resolution of CTΣΔ modulators. The goal of this research is to use the noise shaping benefits of CTΣΔ modulators for different wireless applications, while achieving high resolution and/or wide bandwidth. For this purpose, this research focuses on two different application areas that demand speed and resolution. These are a low-noise high-resolution time-to-digital converter (TDC), ideal for digital phase lock loops (PLL), and a very high-speed, wide-bandwidth CTΣΔ modulator for wireless communication. The first part of this dissertation presents a new noise shaping time-to-digital converter, based on a CTΣΔ modulator. This is intended to reduce the in-band phase noise of a high frequency digital phase lock loop (PLL) without reducing its loop bandwidth. To prove the effectiveness of the proposed TDC, 30GHz and a 40GHz fractional-N digital PLL are designed as a signal sources for a 240GHz FMCW radar system. Both prototypes are fabricated in a 65nm CMOS process. The standalone TDC achieves 81dB dynamic range and 13.2 equivalent number of bits (ENOB) with 176fs integrated-rms noise from 1MHz bandwidth. The in-band phase noise of the 30GHz digital fractional-N PLL is measured as -87dBc/Hz at a 100kHz offset which is equivalent to -212.6dBc/Hz2 normalized in-band phase noise. The second part of this dissertation focuses on high-speed (GS/s) CTΣΔ modulators for wireless communication, and introduces a new time-interleaved reference data weighted averaging (TI-RDWA) architecture suitable for GS/s CTΣΔ modulators. This new architecture shapes the digital-to-analog converter (DAC) mismatch effects in a CTΣΔ modulator at GS/s operating speeds. It allows us to use smaller DAC unit sizes to reduce area and power consumption for the same bandwidth. The prototype 5GS/s CTΣΔ modulator with TI-RDWA is fabricated in 40nm CMOS and it achieves 156MHz bandwidth, 70dB dynamic range, 84dB SFDR and a Schreier FoM of 158.3dB.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138763/1/bdayanik_1.pd

    High Performance Integrated Circuit Blocks for High-IF Wideband Receivers

    Get PDF
    Due to the demand for high‐performance radio frequency (RF) integrated circuit design in the past years, a system‐on‐chip (SoC) that enables integration of analog and digital parts on the same die has become the trend of the microelectronics industry. As a result, a major requirement of the next generation of wireless devices is to support multiple standards in the same chip‐set. This would enable a single device to support multiple peripheral applications and services. Based on the aforementioned, the traditional superheterodyne front‐end architecture is not suitable for such applications as it would require a complete receiver for each standard to be supported. A more attractive alternative is the highintermediate frequency (IF) radio architecture. In this case the signal is digitalized at an intermediate frequency such as 200MHz. As a consequence, the baseband operations, such as down‐conversion and channel filtering, become more power and area efficient in the digital domain. Such architecture releases the specifications for most of the front‐end building blocks, but the linearity and dynamic range of the ADC become the bottlenecks in this system. The requirements of large bandwidth, high frequency and enough resolution make such ADC very difficult to realize. Many ADC architectures were analyzed and Continuous‐Time Bandpass Sigma‐Delta (CT‐BP‐ΣΔ) architecture was found to be the most suitable solution in the high‐IF receiver architecture since they combine oversampling and noise shaping to get fairly high resolution in a limited bandwidth. A major issue in continuous‐time networks is the lack of accuracy due to powervoltage‐ temperature (PVT) tolerances that lead to over 20% pole variations compared to their discrete‐time counterparts. An optimally tuned BP ΣΔ ADC requires correcting for center frequency deviations, excess loop delay, and DAC coefficients. Due to these undesirable effects, a calibration algorithm is necessary to compensate for these variations in order to achieve high SNR requirements as technology shrinks. In this work, a novel linearization technique for a Wideband Low‐Noise Amplifier (LNA) targeted for a frequency range of 3‐7GHz is presented. Post‐layout simulations show NF of 6.3dB, peak S21 of 6.1dB, and peak IIP3 of 21.3dBm, respectively. The power consumption of the LNA is 5.8mA from 2V. Secondly, the design of a CMOS 6th order CT BP‐ΣΔ modulator running at 800 MHz for High‐IF conversion of 10MHz bandwidth signals at 200 MHz is presented. A novel transconductance amplifier has been developed to achieve high linearity and high dynamic range at high frequencies. A 2‐bit quantizer with offset cancellation is alsopresented. The sixth‐order modulator is implemented using 0.18 um TSMC standard analog CMOS technology. Post‐layout simulations in cadence demonstrate that the modulator achieves a SNDR of 78 dB (~13 bit) performance over a 14MHz bandwidth. The modulator’s static power consumption is 107mW from a supply power of ± 0.9V. Finally, a calibration technique for the optimization of the Noise Transfer Function CT BP ΣΔ modulators is presented. The proposed technique employs two test tones applied at the input of the quantizer to evaluate the noise transfer function of the ADC, using the capabilities of the Digital Signal Processing (DSP) platform usually available in mixed‐mode systems. Once the ADC output bit stream is captured, necessary information to generate the control signals to tune the ADC parameters for best Signal‐to‐Quantization Noise Ratio (SQNR) performance is extracted via Least‐ Mean Squared (LMS) software‐based algorithm. Since the two tones are located outside the band of interest, the proposed global calibration approach can be used online with no significant effect on the in‐band content
    • 

    corecore