7 research outputs found

    NASA D3R: 2.0, Enhanced Radar with New Data and Control Features

    Get PDF
    The NASA dual-frequency, dual-polarization, Doppler radar (D3R) was developed to support development of algorithms and validation for the global precipitation measurement (GPM) missions dual-frequency precipitation radar (DPR). The D3R has participated extensively in various field campaigns in North America with geographic features covering both summer and winter climatic regimes. During the year 2017, D3R went through a major upgrade, specially with the digital receiver and waveform generation subsystems. In this work, the D3R systems upgrade will be discussed with a focus on key features of the new system. The new flexible architecture will enable new research capabilities that will be described

    Non-Linear Signal Processing methods for UAV detections from a Multi-function X-band Radar

    Full text link
    This article develops the applicability of non-linear processing techniques such as Compressed Sensing (CS), Principal Component Analysis (PCA), Iterative Adaptive Approach (IAA) and Multiple-input-multiple-output (MIMO) for the purpose of enhanced UAV detections using portable radar systems. The combined scheme has many advantages and the potential for better detection and classification accuracy. Some of the benefits are discussed here with a phased array platform in mind, the novel portable phased array Radar (PWR) by Agile RF Systems (ARS), which offers quadrant outputs. CS and IAA both show promising results when applied to micro-Doppler processing of radar returns owing to the sparse nature of the target Doppler frequencies. This shows promise in reducing the dwell time and increase the rate at which a volume can be interrogated. Real-time processing of target information with iterative and non-linear solutions is possible now with the advent of GPU-based graphics processing hardware. Simulations show promising results

    Electronic scan weather radar: scan strategy and signal processing for volume targets

    Get PDF
    2013 Fall.Includes bibliographical references.Following the success of the WSR-88D network, considerable effort has been directed toward searching for options for the next generation of weather radar technology. With its superior capability for rapidly scanning the atmosphere, electronically scanned phased array radar (PAR) is a potential candidate. A network of such radars has been recommended for consideration by the National Academies Committee on Weather Radar Technology beyond NEXRAD. While conventional weather radar uses a rotating parabolic antenna to form and direct the beam, a phased array radar superimposes outputs from an array of many similar radiating elements to yield a beam that is scanned electronically. An adaptive scan strategy and advanced signal designs and processing concepts are developed in this work to use PAR effectively for weather observation. An adaptive scan strategy for weather targets is developed based on the space-time variability of the storm under observation. Quickly evolving regions are scanned more often and spatial sampling resolution is matched to spatial scale. A model that includes the interaction between space and time is used to extract spatial and temporal scales of the medium and to define scanning regions. The temporal scale constrains the radar revisit time while the measurement accuracy controls the dwell time. These conditions are employed in a task scheduler that works on a ray-by-ray basis and is designed to balance task priority and radar resources. The scheduler algorithm also includes an optimization procedure for minimizing radar scan time. In this research, a signal model for polarimetric phased array weather radar (PAWR) is presented and analyzed. The electronic scan mechanism creates a complex coupling of horizontal and vertical polarizations that produce the bias in the polarimetric variables retrieval. Methods for bias correction for simultaneous and alternating transmission modes are proposed. It is shown that the bias can be effectively removed; however, data quality degradation occurs at far off boresight directions. The effective range for the bias correction methods is suggested by using radar simulation. The pulsing scheme used in PAWR requires a new ground clutter filtering method. The filter is designed to work with a signal covariance matrix in the time domain. The matrix size is set to match the data block size. The filter's design helps overcome limitations of spectral filtering methods and make efficient use of reducing ground clutter width in PAWR. Therefore, it works on modes with few samples. Additionally, the filter can be directly extended for staggered PRT waveforms. Filter implementation for polarimetric retrieval is also successfully developed and tested for simultaneous and alternating staggered PRT. The performance of these methods is discussed in detail. It is important to achieve high sensitivity for PAWR. The use of low-power solid state transmitters to keep costs down requires pulse compression technique. Wide-band pulse compression filters will partly reduce the system sensitivity performance. A system for sensitivity enhancement (SES) for pulse compression weather radar is developed to mitigate this issue. SES uses a dual-waveform transmission scheme and an adaptive pulse compression filter that is based on the self-consistency between signals of the two waveforms. Using SES, the system sensitivity can be improved by 8 to 10 dB

    The Cosmic 21-cm Revolution Charting the first billion years of our universe

    Get PDF
    The redshifted 21-cm signal is set to transform astrophysical cosmology, bringing a historically data-starved field into the era of Big Data. Corresponding to the spin-flip transition of neutral hydrogen, the 21-cm line is sensitive to the temperature and ionization state of the cosmic gas, as well as to cosmological parameters. Crucially, with the development of new interferometers it will allow us to map out the first billion years of our universe, enabling us to learn about the properties of the unseen first generations of galaxies. Rapid progress is being made on both the observational and theoretical fronts, and important decisions on techniques and future direction are being made. The Cosmic 21-cm Revolution gathers contributions from current leaders in this fast-moving field, providing both an overview for graduate students and a reference point for current researchers
    corecore