19,199 research outputs found

    Static output feedback: a survey

    Get PDF
    This paper reviews the static output feedback problem in the control of linear, time-invariant (LTI) systems. It includes analytical and computational methods and presents in a unified fashion, the knowledge gained in the decades of research into this most important problem

    Adaptive Control: Actual Status and Trends

    Get PDF
    Important progress in research and application of Adaptive Control Systems has been achieved in the last ten years. The techniques which are currently used in applications will be reviewed. Theoretical aspects currently under investigation and which are related to the application of adaptive control techniques in various fields will be briefly discussed. Applications in various areas will be briefly reviewed. The use of adaptive techniques for vibrations monitoring and active vibration control will be emphasized

    Control and structural optimization for maneuvering large spacecraft

    Get PDF
    Presented here are the results of an advanced control design as well as a discussion of the requirements for automating both the structures and control design efforts for maneuvering a large spacecraft. The advanced control application addresses a general three dimensional slewing problem, and is applied to a large geostationary platform. The platform consists of two flexible antennas attached to the ends of a flexible truss. The control strategy involves an open-loop rigid body control profile which is derived from a nonlinear optimal control problem and provides the main control effort. A perturbation feedback control reduces the response due to the flexibility of the structure. Results are shown which demonstrate the usefulness of the approach. Software issues are considered for developing an integrated structures and control design environment

    Continuous-time self-tuning algorithms

    Get PDF
    This thesis proposes some new self-tuning algorithms. In contrast to the conventional discrete-time approach to self-tuning control, the continuous-time approach is used here, that is continuous-time design but digital implementation is used. The proposed underlying control methods are combined with a continuous-time version of the well-known discrete recursive least squares algorithms. The continuous-time estimation scheme is chosen to maintain the continuous-time nature of the algorithms. The first new algorithm proposed is emulator-based relay control (which has already been described in a paper by the author). The algorithm is based on the idea of constructing the switching surface by emulators; that is, unrealisable output derivatives are replaced by their emulated values. In particular, the relay is forced to operate in the sliding mode. In this case, it is shown that emulator-based control and its proposed relay version become equivalent in the sense that both give the same control law. The second new algorithm proposed is a continuous-time version of the discrete-time generalized predictive control (GPC) of Clarke et al (which has already been described in a paper by the author). The algorithm, continuous-time generalized predictive control (CGPC), is based on similar ideas to the GPC, however the formulation is very different. For example, the output prediction is accomplished by using the Taylor series expansion of the output and emulating the output derivatives involved. A detailed closed-loop analysis of this algorithm is also given. It is shown that the CGPC control law only changes the closed-loop pole locations leaving the open-loop zeros untouched (except one special case). It is also shown that LQ control can be considered in the CGPC framework. Further, the CGPC is extended to include some design polynomials so that the model-following and pole-placement control can be considered in the same framework. A third new algorithm, a relay version of the CGPC, is described. The method is based on the ideas of the emulator-based relay control and again it is shown that the CGPC and its relay version become equivalent when the relay operates in the sliding mode. Finally, the CGPC ideas are extended to the multivariable systems and the resulting closed-loop system is analysed in some detail. It is shown that some special choice of design parameters result in a decoupled closed-loop system for certain systems. In addition, it is shown that if the system is decouplable, it is possible to obtain model-following control. It is also shown that LQ control, as in the scalar case, can be considered in the same framework. An illustrative simulation study is also provided for all of the above methods throughout the thesis
    corecore