12,869 research outputs found

    Evaluation of neural network pattern classifiers for a remote sensing application

    Full text link
    This paper evaluates the classification accuracy of three neural network classifiers on a satellite image-based pattern classification problem. The neural network classifiers used include two types of the Multi-Layer-Perceptron (MLP) and the Radial Basis Function Network. A normal (conventional) classifier is used as a benchmark to evaluate the performance of neural network classifiers. The satellite image consists of 2,460 pixels selected from a section (270 x 360) of a Landsat-5 TM scene from the city of Vienna and its northern surroundings. In addition to evaluation of classification accuracy, the neural classifiers are analysed for generalization capability and stability of results. Best overall results (in terms of accuracy and convergence time) are provided by the MLP-1 classifier with weight elimination. It has a small number of parameters and requires no problem-specific system of initial weight values. Its in-sample classification error is 7.87% and its out-of-sample classification error is 10.24% for the problem at hand. Four classes of simulations serve to illustrate the properties of the classifier in general and the stability of the result with respect to control parameters, and on the training time, the gradient descent control term, initial parameter conditions, and different training and testing setshttps://ssrn.com/abstract=1523788%20or%20http://dx.doi.org/10.2139/ssrn.1523788Published versio

    Optical implementations of radial basis classifiers

    Get PDF
    We describe two optical systems based on the radial basis function approach to pattern classification. An optical-disk-based system for handwritten character recognition is demonstrated. The optical system computes the Euclidean distance between an unknown input and 650 stored patterns at a demonstrated rate of 26,000 pattern comparisons/s. The ultimate performance of this system is limited by optical-disk resolution to 10^11 binary operations/s. An adaptive system is also presented that facilitates on-line learning and provides additional robustness

    Radial basis function classifier construction using particle swarm optimisation aided orthogonal forward regression

    Get PDF
    We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation
    • …
    corecore