333 research outputs found

    Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    Get PDF
    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014

    Global Precipitation Measurement (GPM): Unified Precipitation Estimation From Space

    Get PDF
    Global Precipitation Measurement (GPM) is an international satellite mission that uses measurements from an advanced radar/radiometer system on a Core Observatory as reference standards to unify and advance precipitation estimates through a constellation of research and operational microwave sensors. GPM is a science mission focusing on a key component of the Earth's water and energy cycle, delivering near real-time observations of precipitation for monitoring severe weather events, freshwater resources, and other societal applications. This work presents the GPM mission design, together with descriptions of sensor characteristics, inter-satellite calibration, retrieval methodologies, ground validation activities, and societal applications

    Global Precipitation Measurement

    Get PDF
    This chapter begins with a brief history and background of microwave precipitation sensors, with a discussion of the sensitivity of both passive and active instruments, to trace the evolution of satellite-based rainfall techniques from an era of inference to an era of physical measurement. Next, the highly successful Tropical Rainfall Measuring Mission will be described, followed by the goals and plans for the Global Precipitation Measurement (GPM) Mission and the status of precipitation retrieval algorithm development. The chapter concludes with a summary of the need for space-based precipitation measurement, current technological capabilities, near-term algorithm advancements and anticipated new sciences and societal benefits in the GPM era

    Falling Snow Estimates from the Global Precipitation Measurement (GPM) Mission

    Get PDF
    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining. This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014, with a specific focus on meeting GPM Mission requirements for falling snow

    The GPM GV Program

    Get PDF
    We present a detailed overview of the structure and activities associated with the NASA-led ground validation component of the NASA-JAXA Global Precipitation Measurement (GPM) mission. The overarching philosophy and approaches for NASAs GV program are presented with primary focus placed on aspects of direct validation and a summary of physical validation campaigns and results. We describe a spectrum of key instruments, methods, field campaigns and data products developed and used by NASAs GV team to verify GPM level-2 precipitation products in rain and snow. We describe the tools and analysis framework used to confirm that NASAs Level-1 science requirements for GPM are met by the GPM Core Observatory. Examples of routine validation activities related to verification of Integrated Multi-satellitE Retrievals for GPM (IMERG) products for two different regions of the globe (Korea and the U.S.) are provided, and a brief analysis related to IMERG performance in the extreme rainfall event associated with Hurricane Florence is discussed

    Cross-validation of active and passive microwave snowfall products over the continental United States

    Get PDF
    Surface snowfall rate estimates from the Global Precipitation Measurement (GPM) mission’sCoreObservatorysensors and theCloudSatradar are compared to those from the Multi-Radar Multi-Sensor (MRMS) radarcomposite product over the continental United States during the period from November 2014 to September 2020. Theanalysis includes the Dual-Frequency Precipitation Radar (DPR) retrieval and its single-frequency counterparts, the GPMCombined Radar Radiometer Algorithm (CORRA), theCloudSatSnow Profile product (2C-SNOW-PROFILE), and twopassive microwave retrievals, i.e., the Goddard Profiling algorithm (GPROF) and the Snow Retrieval Algorithm for GMI(SLALOM). The 2C-SNOW retrieval has the highest Heidke skill score (HSS) for detecting snowfall among the productsanalyzed. SLALOM ranks second; it outperforms GPROF and the other GPM algorithms, all detecting only 30% of thesnow events. Since SLALOM is trained with 2C-SNOW, it suggests that the optimal use of the information content in theGMI observations critically depends on the precipitation training dataset. All the retrievals underestimate snowfall ratesby a factor of 2 compared to MRMS. Large discrepancies (RMSE of 0.7–1.5 mm h21) between spaceborne and ground-based snowfall rate estimates are attributed to the complexity of the ice scattering properties and to the limitations of theremote sensing systems: the DPR instrument has low sensitivity, while the radiometric measurements are affected by theconfounding effects of the background surface emissivity and of the emission of supercooled liquid droplet layers

    Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow

    Get PDF
    As a component of the Earth's hydrologic cycle, and especially at higher latitudes,falling snow creates snow pack accumulation that in turn provides a large proportion of the fresh water resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) mission Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011-2012 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite,and radiometers on constellation member satellites. Multi-parameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude and in-situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites taking in-situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx fieldcampaign is described and three illustrative cases detailed

    SLALOM: An all-surface snow water path retrieval algorithm for the GPM microwave imager

    Get PDF
    This paper describes a new algorithm that is able to detect snowfall and retrieve the associated snow water path (SWP), for any surface type, using the Global Precipitation Measurement (GPM) Microwave Imager (GMI). The algorithm is tuned and evaluated against coincident observations of the Cloud Profiling Radar (CPR) onboard CloudSat. It is composed of three modules for (i) snowfall detection, (ii) supercooled droplet detection and (iii) SWP retrieval. This algorithm takes into account environmental conditions to retrieve SWP and does not rely on any surface classification scheme. The snowfall detection module is able to detect 83% of snowfall events including light SWP (down to 1 × 10−3 kg·m−2) with a false alarm ratio of 0.12. The supercooled detection module detects 97% of events, with a false alarm ratio of 0.05. The SWP estimates show a relative bias of −11%, a correlation of 0.84 and a root mean square error of 0.04 kg·m−2. Several applications of the algorithm are highlighted: Three case studies of snowfall events are investigated, and a 2-year high resolution 70°S–70°N snowfall occurrence distribution is presented. These results illustrate the high potential of this algorithm for snowfall detection and SWP retrieval using GMI
    • …
    corecore