416,709 research outputs found

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.Peer reviewe

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond

    A stand-alone tree demography and landscape structure module for Earth system models

    Get PDF
    We propose and demonstrate a new approach for the simulation of woody ecosystem stand dynamics, demography, and disturbance-mediated heterogeneity suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any earth system model. The approach is encoded in a model called Populations-Order-Physiology (POP). We demonstrate the behavior and performance of POP coupled to the Community Atmosphere Biosphere Land Exchange model (CABLE) applied along the Northern Australian Tropical Transect, featuring gradients in rainfall and fire disturbance. The model is able to simultaneously reproduce observation-based estimates of key functional and structural variables along the transect, namely gross primary production, tree foliage projective cover, basal area, and maximum tree height. Prospects for the use of POP to address current vegetation dynamic deficiencies in earth system modeling are discussed

    ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP

    Get PDF
    A community diagnostics and performance metrics tool for the evaluation of Earth system models (ESMs) has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations. The priority of the effort so far has been to target specific scientific themes focusing on selected essential climate variables (ECVs), a range of known systematic biases common to ESMs, such as coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases, and soil hydrology–climate interactions, as well as atmospheric CO2 budgets, tropospheric and stratospheric ozone, and tropospheric aerosols. The tool is being developed in such a way that additional analyses can easily be added. A set of standard namelists for each scientific topic reproduces specific sets of diagnostics or performance metrics that have demonstrated their importance in ESM evaluation in the peer-reviewed literature. The Earth System Model Evaluation Tool (ESMValTool) is a community effort open to both users and developers encouraging open exchange of diagnostic source code and evaluation results from the Coupled Model Intercomparison Project (CMIP) ensemble. This will facilitate and improve ESM evaluation beyond the state-of-the-art and aims at supporting such activities within CMIP and at individual modelling centres. Ultimately, we envisage running the ESMValTool alongside the Earth System Grid Federation (ESGF) as part of a more routine evaluation of CMIP model simulations while utilizing observations available in standard formats (obs4MIPs) or provided by the user

    Earth System Model Evaluation Tool (ESMValTool) v2.0 - An extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP

    Get PDF
    The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility. It consists of (1) an easy-to-install, well-documented Python package providing the core functionalities (ESMValCore) that performs common preprocessing operations and (2) a diagnostic part that includes tailored diagnostics and performance metrics for specific scientific applications. Here we describe large-scale diagnostics of the second major release of the tool that supports the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). ESMValTool v2.0 includes a large collection of diagnostics and performance metrics for atmospheric, oceanic, and terrestrial variables for the mean state, trends, and variability. ESMValTool v2.0 also successfully reproduces figures from the evaluation and projections chapters of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and incorporates updates from targeted analysis packages, such as the NCAR Climate Variability Diagnostics Package for the evaluation of modes of variability, the Thermodynamic Diagnostic Tool (TheDiaTo) to evaluate the energetics of the climate system, as well as parts of AutoAssess that contains a mix of top-down performance metrics. The tool has been fully integrated into the Earth System Grid Federation (ESGF) infrastructure at the Deutsches Klimarechenzentrum (DKRZ) to provide evaluation results from CMIP6 model simulations shortly after the output is published to the CMIP archive. A result browser has been implemented that enables advanced monitoring of the evaluation results by a broad user community at much faster timescales than what was possible in CMIP5

    Assessment of high latitude variability and extreme events in the Bering Sea as simulated by a global climate model

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2014.Atmospheric and Oceanic observations of the Arctic and Subarctic are relatively sparse and hinder our ability to analyze short term variability and long-duration anomalies of physical and biological variables over decadal time scales. Earth System Models (ESM's), such as the Community Earth System Model (CESM1), represent a useful tool to advance the understanding and the predictive potential of large-scale shifts in the climate and climate related impacts. This thesis initially focuses on assessing the skill of the Community Climate System Model (CCSM4), to capture natural variability of the climate system. Subsequently, I examine the impacts of variability and seasonal-scale extremes of the physical environment on the marine ecosystem of the eastern Bering Sea as simulated by an earth system model, the CESM1, which includes the CCSM4 and earth system elements. A performance assessment of key atmospheric components (air temperature, sea level pressure, wind speed and direction) simulated by the CCSM4 over the Bering Sea and Arctic domains suggests a general improvement in model predictions at high latitudes relative to the model's predecessor, the CCSM3. However, several shortcomings, with possible implications for marine ecosystem modeling, still remain in this version of the CCSM. The most important of which includes an under-simulated Siberian High and a large northwest displacement of the Aleutian Low resulting in a negative bias of up to 8 hPa over the Bering Sea. The simulated inter-annual variability of surface air temperature and sea level pressure over the Bering Sea was found to exceed observed variability by ~1.5 to 2 times. The displaced pressure systems and increased variability could have important ramifications for modeling efforts that use CCSM atmospheric output as drivers for marine ecosystem studies

    The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation

    Full text link
    The increasing complexity of Earth system models has inspired efforts to quantitatively assess model fidelity through rigorous comparison with best available measurements and observational data products. Earth system models exhibit a high degree of spread in predictions of land biogeochemistry, biogeophysics, and hydrology, which are sensitive to forcing from other model components. Based on insights from prior land model evaluation studies and community workshops, the authors developed an open source model benchmarking software package that generates graphical diagnostics and scores model performance in support of the International Land Model Benchmarking (ILAMB) project. Employing a suite of in situ, remote sensing, and reanalysis data sets, the ILAMB package performs comprehensive model assessment across a wide range of land variables and generates a hierarchical set of web pages containing statistical analyses and figures designed to provide the user insights into strengths and weaknesses of multiple models or model versions. Described here is the benchmarking philosophy and mathematical methodology embodied in the most recent implementation of the ILAMB package. Comparison methods unique to a few specific data sets are presented, and guidelines for configuring an ILAMB analysis and interpreting resulting model performance scores are discussed. ILAMB is being adopted by modeling teams and centers during model development and for model intercomparison projects, and community engagement is sought for extending evaluation metrics and adding new observational data sets to the benchmarking framework.Key PointThe ILAMB benchmarking system broadly compares models to observational data sets and provides a synthesis of overall performancePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146994/1/jame20779_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146994/2/jame20779.pd
    • 

    corecore