79 research outputs found

    Lidar Systems for Precision Navigation and Safe Landing on Planetary Bodies

    Get PDF
    The ability of lidar technology to provide three-dimensional elevation maps of the terrain, high precision distance to the ground, and approach velocity can enable safe landing of robotic and manned vehicles with a high degree of precision. Currently, NASA is developing novel lidar sensors aimed at needs of future planetary landing missions. These lidar sensors are a 3-Dimensional Imaging Flash Lidar, a Doppler Lidar, and a Laser Altimeter. The Flash Lidar is capable of generating elevation maps of the terrain that indicate hazardous features such as rocks, craters, and steep slopes. The elevation maps collected during the approach phase of a landing vehicle, at about 1 km above the ground, can be used to determine the most suitable safe landing site. The Doppler Lidar provides highly accurate ground relative velocity and distance data allowing for precision navigation to the landing site. Our Doppler lidar utilizes three laser beams pointed to different directions to measure line of sight velocities and ranges to the ground from altitudes of over 2 km. Throughout the landing trajectory starting at altitudes of about 20 km, the Laser Altimeter can provide very accurate ground relative altitude measurements that are used to improve the vehicle position knowledge obtained from the vehicle navigation system. At altitudes from approximately 15 km to 10 km, either the Laser Altimeter or the Flash Lidar can be used to generate contour maps of the terrain, identifying known surface features such as craters, to perform Terrain relative Navigation thus further reducing the vehicle s relative position error. This paper describes the operational capabilities of each lidar sensor and provides a status of their development. Keywords: Laser Remote Sensing, Laser Radar, Doppler Lidar, Flash Lidar, 3-D Imaging, Laser Altimeter, Precession Landing, Hazard Detectio

    Real applications of quantum imaging

    Get PDF
    In the last years the possibility of creating and manipulating quantum states of light has paved the way to the development of new technologies exploiting peculiar properties of quantum states, as quantum information, quantum metrology & sensing, quantum imaging ... In particular Quantum Imaging addresses the possibility of overcoming limits of classical optics by using quantum resources as entanglement or sub-poissonian statistics. Albeit quantum imaging is a more recent field than other quantum technologies, e.g. quantum information, it is now substantially mature for application. Several different protocols have been proposed, some of them only theoretically, others with an experimental implementation and a few of them pointing to a clear application. Here we present a few of the most mature protocols ranging from ghost imaging to sub shot noise imaging and sub Rayleigh imaging.Comment: REVIEW PAPE

    Efficient, concurrent Bayesian analysis of full waveform LaDAR data

    Get PDF
    Bayesian analysis of full waveform laser detection and ranging (LaDAR) signals using reversible jump Markov chain Monte Carlo (RJMCMC) algorithms have shown higher estimation accuracy, resolution and sensitivity to detect weak signatures for 3D surface profiling, and construct multiple layer images with varying number of surface returns. However, it is computational expensive. Although parallel computing has the potential to reduce both the processing time and the requirement for persistent memory storage, parallelizing the serial sampling procedure in RJMCMC is a significant challenge in both statistical and computing domains. While several strategies have been developed for Markov chain Monte Carlo (MCMC) parallelization, these are usually restricted to fixed dimensional parameter estimates, and not obviously applicable to RJMCMC for varying dimensional signal analysis. In the statistical domain, we propose an effective, concurrent RJMCMC algorithm, state space decomposition RJMCMC (SSD-RJMCMC), which divides the entire state space into groups and assign to each an independent RJMCMC chain with restricted variation of model dimensions. It intrinsically has a parallel structure, a form of model-level parallelization. Applying the convergence diagnostic, we can adaptively assess the convergence of the Markov chain on-the-fly and so dynamically terminate the chain generation. Evaluations on both synthetic and real data demonstrate that the concurrent chains have shorter convergence length and hence improved sampling efficiency. Parallel exploration of the candidate models, in conjunction with an error detection and correction scheme, improves the reliability of surface detection. By adaptively generating a complimentary MCMC sequence for the determined model, it enhances the accuracy for surface profiling. In the computing domain, we develop a data parallel SSD-RJMCMC (DP SSD-RJMCMCU) to achieve efficient parallel implementation on a distributed computer cluster. Adding data-level parallelization on top of the model-level parallelization, it formalizes a task queue and introduces an automatic scheduler for dynamic task allocation. These two strategies successfully diminish the load imbalance that occurred in SSD-RJMCMC. Thanks to the coarse granularity, the processors communicate at a very low frequency. The MPIbased implementation on a Beowulf cluster demonstrates that compared with RJMCMC, DP SSD-RJMCMCU has further reduced problem size and computation complexity. Therefore, it can achieve a super linear speedup if the number of data segments and processors are chosen wisely

    Full waveform LiDAR for adverse weather conditions

    Get PDF

    Millimeter wave imaging : a historical review

    Get PDF
    The SPIE Passive and Active Millimeter Wave Imaging conference has provided an annual focus and forum for practitioners in the field of millimeter wave imaging for the past two decades. To celebrate the conference's twentieth anniversary we present a historical review of the evolution of millimeter wave imaging over the past twenty years. Advances in device technology play a fundamental role in imaging capability whilst system architectures have also evolved. Imaging phenomenology continues to be a crucial topic underpinning the deployment of millimeter wave imaging in diverse applications such as security, remote sensing, non-destructive testing and synthetic vision.Publisher PD
    • …
    corecore