23,459 research outputs found

    Unitary space-time modulation via Cayley transform

    Get PDF
    A prevoiusly proposed method for communicating with multiple antennas over block fading channels is unitary space-time modulation (USTM). In this method, the signals transmitted from the antennas, viewed as a matrix with spatial and temporal dimensions, form a unitary matrix, i.e., one with orthonormal columns. Since channel knowledge is not required at the receiver, USTM schemes are suitable for use on wireless links where channel tracking is undesirable or infeasible, either because of rapid changes in the channel characteristics or because of limited system resources. Previous results have shown that if suitably designed, USTM schemes can achieve full channel capacity at high SNR and, moreover, that all this can be done over a single coherence interval, provided the coherence interval and number of transmit antennas are sufficiently large, which is a phenomenon referred to as autocoding. While all this is well recognized, what is not clear is how to generate good performing constellations of (nonsquare) unitary matrices that lend themselves to efficient encoding/decoding. The schemes proposed so far either exhibit poor performance, especially at high rates, or have no efficient decoding algorithms. We propose to use the Cayley transform to design USTM constellations. This work can be viewed as a generalization, to the nonsquare case, of the Cayley codes that have been proposed for differential USTM. The codes are designed based on an information-theoretic criterion and lend themselves to polynomial-time (often cubic) near-maximum-likelihood decoding using a sphere decoding algorithm. Simulations suggest that the resulting codes allow for effective high-rate data transmission in multiantenna communication systems without knowing the channel. However, our preliminary results do not show a substantial advantage over training-based schemes

    Quasi-Orthogonal Design and Performance Analysis of Amplify-And-Forward Relay Networks with Multiple-Antennas

    Full text link
    This paper is on the design and performance analysis of practical distributed space-time codes for wireless relay networks with multiple antennas terminals. The amplify-andforward scheme is used in a way that each relay transmits a scaled version of the linear combination of the received symbols. We propose distributed generalized quasi-orthogonal space-time codes which are distributed among the source antennas and relays, and valid for any number of relays. Assuming M-PSK and M-QAM signals, we derive a formula for the symbol error probability of the investigated scheme over Rayleigh fading channels. For sufficiently large SNR, this paper derives closed-form average SER expression. The simplicity of the asymptotic results provides valuable insights into the performance of cooperative networks and suggests means of optimizing them. Our analytical results have been confirmed by simulation results, using full-rate full-diversity distributed codes

    High-rate groupwise STBC using low-complexity SIC based receiver

    Get PDF
    In this paper, using diagonal signal repetition with Alamouti code employed as building blocks, we propose a high- rate groupwise space-time block code (GSTBC) which can be effectively decoded by a low-complexity successive interference cancellation (SIC) based receiver. The proposed GSTBC and SIC based receiver are jointly designed such that the diversity repetition in a GSTBC can induce the dimension expansion to suppress interfering signals as well as to obtain diversity gain. Our proposed scheme can be easily applied to the case of large number of antennas while keeping a reasonably low complexity at the receiver. It is found that the required minimum number of receive antennas is only two for the SIC based receiver to avoid the error floor in performance. The simulation results show that the proposed GSTBC with SIC based receiver obtains a near maximum likelihood (ML) performance while having a significant performance gain over other codes equipped with linear decoders

    Turbo space-time coding for mimo systems : designs and analyses

    Get PDF
    Multiple input multiple output (MIMO) systems can provide high diversity, high data rate or a mix of both, for wireless communications. This dissertation combines both modes and suggests analyses and techniques that advance the state of the art of MIMO systems. Specifically, this dissertation studies turbo space-time coding schemes for MIMO systems. Before the designs of turbo space-time codes are presented, a fundamental tool to analyze and design turbo coding schemes, the extrinsic information transfer (EXIT) chart method, is extended from the binary/nonbinary code case to coded modulation case. This extension prepares the convergence analysis for turbo space-time code. Turbo space-time codes with symbols precoded by randomly chosen unitary time variant linear transformations (TVLT) are investigated in this dissertation. It is shown that turbo codes with TVLT achieve full diversity gain and good coding gain with high probability. The probability that these design goals are not met is shown to vanish exponentially with the Hamming distance between codewords (number of different columns). Hence, exhaustive tests of the rank and the determinant criterion are not required. As an additional benefit of the application of TVLT, with the removal of the constant modulation condition, it is proved that throughput rates achieved by these codes are significantly higher than the rates achievable by conventional space-time codes. Finally, an EXIT chart analysis for turbo space-time codes with TVLT is developed, with application to predicting frame error rate (FER) performance without running full simulation. To increase the data rate of turbo-STC without exponentially increasing the decoding complexity, a multilevel turbo space-time coding scheme with TVLT is proposed. An iterative joint demapping and decoding receiver algorithm is also proposed. For MIMO systems with a large number of transmit antennas, two types of layered turbo space-time (LTST) coding schemes are studied. For systems with low order modulation, a type of LTST with a vertical encoding structure and a low complexity parallel interference cancellation (PlC) receiver is shown to achieve close to capacity performance. For high order modulation, another type of LTST with a horizontal encoding structure, TVLT, and an ordered successive interference cancellation (OSIC) receiver is shown to achieve better performance than conventional layered space-time coding schemes, where ordering is not available in the SIC detection

    Transmission and detection for space-time block coding and v-blast systems

    Get PDF
    This dissertation focuses on topics of data transmission and detection of space -time block codes (STBC). The STBCs can be divided into two main categories, namely, the orthogonal space-time block codes (OSTBC) and the quasi-orthogonal space-time codes (Q-OSTBC). The space-time block coded systems from transceiver design perspective for both narrow-band and frequency selective wireless environment are studied. The dissertation also processes and studies a fast iterative detection scheme for a high-rate space-time transmission system, the V-BLAST system. In Chapter 2, a new OSTBC scheme with full-rate and full-diversity, which can be used on QPSK transceiver systems with four transmit antennas and any number of receivers is studied. The newly proposed coding scheme is a non-linear coding. Compared with full-diversity QOSTBC, an obvious advantage of our proposed new OSTBC is that the coded signals transmitted through all four transmit antennas do not experience any constellation expansion. In Chapter 3, a new fast coherent detection algorithm is proposed to provide maximum likelihood (ML) detection for Q-OSTBC. The new detection scheme is also very useful to analysis the diversity property of Q-OSTBC and design full diversity Q-OSTBC codes. The complexity of the new proposed detection algorithm can be independent to the modulation order and is especially suitable for high data rate transmission. In Chapter 4, the space-time coding schemes in frequency selective channels are studied. Q-OSTC transmission and detection schemes are firstly extended for frequency selective wireless environment. A new block based quasi-orthogonal space-time block encoding and decoding (Q-OSTBC) scheme for a wireless system with four transmit antennas is proposed in frequency selective fading channels. The proposed MLSE detection scheme effectively combats channel dispersion and frequency selectivity due to multipath, yet still provides full diversity gain. However, since the computational complexity of MLSE detection increases exponentially with the maximum delay of the frequency selective channel, a fast sub-optimal detection scheme using MMSE equalizer is also proposed, especially for channels with large delays. The Chapter 5 focuses on the V-BLAST system, an important high-rate space-time data transmission scheme. A reduced complexity ML detection scheme for VBLAST systems, which uses a pre-decoder guided local exhaustive search is proposed and studied. A polygon searching algorithm and an ordered successive interference cancellation (O-SIC) sphere searching algorithm are major components of the proposed multi-step ML detectors. At reasonable high SNRs, our algorithms have low complexity comparable to that of O-SIC algorithm, while they provide significant performance improvement. Another new low complexity algorithm termed ordered group-wise interference cancellation (O-GIC) is also proposed for the detection of high dimensional V-BLAST systems. The O-GIC based detection scheme is a sub-optimal detection scheme, however, it outperforms the O-SIC
    • …
    corecore