224 research outputs found

    Energy-Efficient Wireless Circuits and Systems for Internet of Things

    Full text link
    As the demand of ultra-low power (ULP) systems for internet of thing (IoT) applications has been increasing, large efforts on evolving a new computing class is actively ongoing. The evolution of the new computing class, however, faced challenges due to hard constraints on the RF systems. Significant efforts on reducing power of power-hungry wireless radios have been done. The ULP radios, however, are mostly not standard compliant which poses a challenge to wide spread adoption. Being compliant with the WiFi network protocol can maximize an ULP radio’s potential of utilization, however, this standard demands excessive power consumption of over 10mW, that is hardly compatible with in ULP systems even with heavy duty-cycling. Also, lots of efforts to minimize off-chip components in ULP IoT device have been done, however, still not enough for practical usage without a clean external reference, therefore, this limits scaling on cost and form-factor of the new computer class of IoT applications. This research is motivated by those challenges on the RF systems, and each work focuses on radio designs for IoT applications in various aspects. First, the research covers several endeavors for relieving energy constraints on RF systems by utilizing existing network protocols that eventually meets both low-active power, and widespread adoption. This includes novel approaches on 802.11 communication with articulate iterations on low-power RF systems. The research presents three prototypes as power-efficient WiFi wake-up receivers, which bridges the gap between industry standard radios and ULP IoT radios. The proposed WiFi wake-up receivers operate with low power consumption and remain compatible with the WiFi protocol by using back-channel communication. Back-channel communication embeds a signal into a WiFi compliant transmission changing the firmware in the access point, or more specifically just the data in the payload of the WiFi packet. With a specific sequence of data in the packet, the transmitter can output a signal that mimics a modulation that is more conducive for ULP receivers, such as OOK and FSK. In this work, low power mixer-first receivers, and the first fully integrated ultra-low voltage receiver are presented, that are compatible with WiFi through back-channel communication. Another main contribution of this work is in relieving the integration challenge of IoT devices by removing the need for external, or off-chip crystals and antennas. This enables a small form-factor on the order of mm3-scale, useful for medical research and ubiquitous sensing applications. A crystal-less small form factor fully integrated 60GHz transceiver with on-chip 12-channel frequency reference, and good peak gain dual-mode on-chip antenna is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162975/1/jaeim_1.pd

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Software-hardware systems for the Internet-of-Things

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages [187]-201).Although interest in connected devices has surged in recent years, barriers still remain in realizing the dream of the Internet of Things (IoT). The main challenge in delivering IoT systems stems from a huge diversity in their demands and constraints. Some applications work with small sensors and operate using minimal energy and bandwidth. Others use high-data-rate multimedia and virtual reality systems, which require multiple-gigabits-per-second throughput and substantial computing power. While both extremes stress the computation, communications, and energy resources available to the underlying devices, each intrinsically requires different solutions to satisfy its needs. This thesis addresses both bandwidth and energy constraints by developing custom software-hardware systems. To tackle the bandwidth constraint, this thesis introduces three systems. First, it presents AirShare, a synchronized abstraction to the physical layer, which enables the direct implementation of diverse kinds of distributed protocols for loT sensors. This capability results in a much higher throughput in today's IoT networks. Then, it presents Agile-Link and MoVR, new millimeter wave devices and protocols which address two main problems that prevent the adoption of millimeter wave frequencies in today's networks: signal blockage and beam alignment. Lastly, this thesis shows how these systems enable new IoT applications, such as untethered high-quality virtual reality. To tackle the energy constraint, this thesis introduces a VLSI chip, which is capable of performing a million-point Fourier transform in real-time, while consuming 40 times less power than prior fast Fourier transforms. Then, it presents Caraoke, a small, low-cost and low-power sensor, which harvests its energy from solar and enables new smart city applications, such as traffic management and smart parking.by Omid Salehi-Abari.Ph. D

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    Cmos Rotary Traveling Wave Oscillators (Rtwos)

    Get PDF
    Rotary Traveling Wave Oscillator (RTWO) represents a transmission line based technology for multi-gigahertz multiple phase clock generation. RTWO is known for providing low jitter and low phase noise signals but the issue of high power consumption is a major drawback in its application. Direction of wave propagation is random and is determined by the least resistance path in the absence of an external direction control circuit. The objective of this research is to address some of the problems of RTWO design, including high power consumption, uncertainty of propagation direction and optimization of design variables. Included is the modeling of RTWO for sensitivity, phase noise and power analysis. Research objectives were met through design, simulation and implementation. Different designs of RTWO in terms of ring size and number of amplifier stages were implemented and tested. Design tools employed include Agilent ADS, Cadence EDA, SONNET and Altium PCB Designer. Test chip was fabricated using IBM 0.18 μm RF CMOS technology. Performance measures of interest are tuning range, phase noise and power consumption. Agilent ADS and SONNET were used for electromagnetic modeling of transmission lines and electromagnetic field radiation. For each design, electromagnetic simulations were carried out followed by oscillation synthesis based on circuit simulation in Cadence Spectre. RTWO frequencies between 2 GHz and 12 GHz were measured based on the ring size of transmission lines. Simulated microstrip transmission line segments had a quality factor between 5.5 and 18. For the various designs, power consumption ranged from 20 mW to 120 mW. Measured phase noise ranged between -123 dBc/Hz and -87 dBc/Hz at 1 MHz offset. Development also included the design of a wide band buffer and a printed circuit board with high signal integrity for accurate measurement of oscillation frequency and other performance measures. Simulated performance, schematics and measurement results are presented

    AN EFFICIENT COMBINED CONGESTION HANDLING=--A--cN-:cD~-­ ROUTE MAINTENANCE PROTOCOL FOR DYNAMIC ENVIRONMENT IN BLUETOOTH NETWORK

    Get PDF
    Bluetooth IS a widespread technology for small wireless networks that permits Bluetooth devices to construct a multi-hop network called a scatternet. A large number of connections passing through a single master/ bridge device may create the problem of congestion in a Bluetooth scatternet. In addition, routing in a multi-hop dynamic Bluetooth network, where a number of masters and bridges exist, sometimes creates technical hitches in a scatternet. It has been observed that frequent link disconnections and a new route construction consume more system resources that ultimately degrade the performance of the whole network. As, Bluetooth specification has defined piconet configuration, scatternet configuration has still not been standardized. The main objective of this thesis is to provide an efficient combined protocol for scatternet congestion handling and route maintenance. The methodology contains three parts

    Development of FPGA-based High-Speed serial links for High Energy Physics Experiments

    Get PDF
    High Energy Physics (HEP) experiments generate high volumes of data which need to be transferred over long distance. Then, for data read out, reliable and high-speed links are necessary. Over the years, due to their extreme high bandwidth, serial links (especially optical) have been preferred over the parallel ones. So that, now, high-speed serial links are commonly used in Trigger and Data Acquisition (TDAQ) systems of HEP experiments, not only for data transfer, but also for the distribution of trigger and control systems. Examples of their wide use can be found at CERN, where each of the four big experiments mounted on the Large Hadron Collider (LHC) uses a huge amount of serial links in its read out system. Again at LHC, the Timing, Trigger and Control system (TTC), which broadcasts the timing signals, from the LHC machine to the experiments, uses optical serial link to distribute signals over kilometers of distance (diameter of LHC is 27 Km). Also for upgrades of LHC, physical layer components and protocol chips (ASIC) have been designed and are now under development: the Versatile Link and the GBT protocol (and ASICs) whose peculiarity relies in their radiation hardness. This PhD project is intended to respond to the requests of HEP experiments, developing: - a high-speed self-adapting serial link, which can be easily used in different application fields; - the serial interface of a read out board in the end-cap region of ATLAS Experiment at LHC; - the interface board for the barrel read out system of the ATLAS Experiments. Both the two last projects have required the development of fixed latency, high-speed serial links. In order to take advantage of flexibility, re-programmability and system integration of SRAM-based Field Programmable Gate Array devices (FPGAs), their serializer-deserializer (SERDES) embedded modules have been chosen for the development of the links. However, as a drawback, FPGA embedded SERDESes are typically designed for applications that do not require a deterministic latenc. Then, an accurate study of their architecture has been necessary, in order to find a configuration and a clocking scheme to guarantee a deterministic transmission delay in data transfers. The frequency agile, auto-adaptive serial link is capable to analyze the incoming data stream, by scanning the Unit Interval, and to find the highest transmission line rate, according to a given tolerated Bit Error Ratio (BER). It uses a new feature (RX eye margin analysis) of the RX side of the Xilinx 7 series FPGAs high-speed transceivers (GTX/GTH), in order to measure and display the receiver eye margin after the equalizer. When the new eye scan functionality is running, an additional sampler is activated in the GTX. It acquires a new sample (Offset Sample), with programmable (horizontal and vertical) offsets from the data sample point (Data Sample) used in standard operation. An eye scan measurement run is performed by acquiring a large number of Data Samples (which can range from tens of thousands to 1014 or more) and by counting the number of times the Offset Sample has a different value with respect to the Data Sample; the latter number is often called Error Count. The BER at a specific vertical and horizontal offset is given by the ratio between the Error Count and the Sample Count. By repeating the eye scan measurement for each horizontal and vertical offset in the Unit Interval (or in a part of the U.I.) a 2-D BER map can be produced which is usually called Statistical Eye. The auto-adaptive derail ink is designed around an FPGA-embedded microprocessor, which drives the programmable ports of the GTX, in order to perform a 2-D eye-scan, and takes care of the reconfiguration of the GTX parameters, in order to fully benefit from the available link bandwidth. Xilinx provides a standalone tool that allows performing the Eye Scan Analysis on the receiver side of the GTX/GTH transceiver, using the MicroBlaze Micro Controller System macro; the toolkit also includes the Eye Scan algorithm (providing the C code). Moreover, Xilinx supplies the hardware sources files for the implementation of a link based on the XAUI protocol, in which the GTXs are arranged in a loopback configuration. The original contribution of this work consists in the build-up, design and optimization of a full architecture, on top of the basic Xilinx tool, which: - drives the programmable ports of the GTX in order to modify the line rate of the link; - runs consecutive eye scans for various line rate; - analyses the results of the different scans, in order to find the maximum line rate sustainable by the link; - manages the synchronization between the transmitter and the receiver of the link, that will be needed at each line rate change. The application can be deployed as a monitoring tool in HEP experiments, in order to remotely monitor a transmission system or detect issues in the serial link physical layer. An application example could be some of the many experiments at Large Hadron Collider (LHC) at CERN, which have been intensively using different serial links, both for transmission of TTC signals and for trigger and data readout. Besides, this solution could be easily adapted in wide, different frameworks, as it can be used on top of any user’s existing link, as it has no specific requirement about link specification or protocol. The other two serial interface developed in this project are in the framework of the ATLAS experiment. ATLAS is one of the four detectors installed on the LHC proton-proton collider built at CERN. It was designed to collide two opposing particle beams at an energy of 14 TeV and to reach a luminosity of 1034 cm-2/s. In order to reach the design parameters, the LHC system will be upgraded in several phases. In order to take advantage of the improved LHC operation, the ATLAS detector must be upgraded following the same schedule as the LHC upgrade. The main focus of the Phase-I ATLAS upgrade (to be completed by 2018) is on the Level-1 trigger where upgrades are planned for both the muon and the calorimeter trigger systems. In particular, for the end-cap region of the muon spectrometer, the installation of a new set of precision tracking and trigger detectors was approved, called the ‘New Small Wheels’ (NSW). It will be instrumented with micro-mesh gaseous structure detectors (MM) and small-strip Thin Gap Chambers (sTGC). These detectors will solve two points of particular importance at high luminosity: high rate of fake high-pt level-1 muon triggers, and high L1 muon rate with the current momentum threshold. With the introduction of new detectors, new electronics need to be developed, in particular new trigger electronics for both the MM and sTGC. I was involved in the development of serial interface of the FPGA-based sTGC trigger board that uses information from the coarse sTGC readout pads. The sTGC pad trigger board receives serial information coming from 24 front-end chips at 4.8 Gb/s. On the board, data are deserialised, aligned and analyzed by the trigger algorithm. The trigger logic processes the data and choses two candidates at each Bunch Crossing. The result is then serialised and used for selective fine-grained strip readout. I developed the pad trigger board interface logic. The data format from the front-end chips has been agreed upon, and defines the requirements on the receiver and decoding logic. The number of output lines is 24 and the data are 8B/10B formatted. While the receiver uses the Xilinx Kintex-7 GTX transceivers, the output lines are driven by double data rate (DDR) shift registers at 640 Mb/s. A fixed latency in the sTGC trigger chain was guaranteed through the implementation and configuration of all serialisers and deserialisers. In order to test the project, I also developed a simple microprocessor-based protocol for accessing the board via terminal (rs232). A demonstrator board is now being developed. Another Phase-I Level-1 trigger upgrade consists of a new Muon to Central Trigger Processor Interface (MUCTPI). The MUCTPI receives muon candidate information from each of the muon detectors, selects muon candidates and sends them to the Central Trigger Processor (CTP). In the first runs of ATLAS, the L1 Barrel trigger candidate data were transferred to the MuCTPI via copper cables. In order to cope with the trigger upgrade, serial optical links are necessary. The optical links will provide a much higher bandwidth (up to 6.4 Gb/s) which will be used to transfer additional information from the sector logic modules, for example data for more than two muon candidates. They will also provide a lower transmission latency. I developed the interface board between the new MUCTPI and the Resistive Plate Chambers (RPC) muon trigger, using the Xilinx Artix-7 FPGA GTP transceivers. I took care of the study of feasibility of the new serial optical transmitter and the logic for the new data format. Also in this case, the fixed latency has been a requirement to be fulfilled

    SCREAM: Sensory Channel Remote Execution Attack Methods

    Get PDF
    Sensory channel threats on embedded systems are an often overlooked attack vector. Because many computing systems focus on digital communication, much of the security research for embedded systems has focused on securing the communication channels between devices. This project explores sensory channel attack concepts and demonstrates that an attack on an embedded device purely through sensory channel inputs can achieve arbitrary code execution. Unlike previous research on sensory channel attacks, this work does not require the device to have preloaded malware. We demonstrate that our attacks were successful in two separate, realistic applications with up to a 100.00% success rate. Finally, we propose a possible defense to these attacks and suggest future avenues of research in this field

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces
    • …
    corecore