568 research outputs found

    Wireless magnetic sensor network for road traffic monitoring and vehicle classification

    Get PDF
    Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification

    Networking Protocols For Energy Harvesting Wireless Sensor Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Communication Infrastructures for Distributed Control of Power Distribution Networks

    No full text
    Accepted versio

    Intégration des méthodes formelles dans le développement des RCSFs

    Get PDF
    In this thesis, we have relied on formal techniques in order to first evaluate WSN protocols and then to propose solutions that meet the requirements of these networks. The thesis contributes to the modelling, analysis, design and evaluation of WSN protocols. In this context, the thesis begins with a survey on WSN and formal verification techniques. Focusing on the MAC layer, the thesis reviews proposed MAC protocols for WSN as well as their design challenges. The dissertation then proceeds to outline the contributions of this work. As a first proposal, we develop a stochastic generic model of the 802.11 MAC protocol for an arbitrary network topology and then perform probabilistic evaluation of the protocol using statistical model checking. Considering an alternative power source to operate WSN, energy harvesting, we move to the second proposal where a protocol designed for EH-WSN is modelled and various performance parameters are evaluated. Finally, the thesis explores mobility in WSN and proposes a new MAC protocol, named "Mobility and Energy Harvesting aware Medium Access Control (MEH-MAC)" protocol for dynamic sensor networks powered by ambient energy. The protocol is modelled and verified under several features

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF

    DESIGN AND EVALUATION OF PORTABLE PSYCHOACOUSTIC TESTING SYSTEMS

    Get PDF
    There is an increasing demand for developing portable psychoacoustic testing systems to evaluate the hearing abilities of people. In this thesis, the design, development, and evaluation of portable, flexible, and versatile wired and wireless psychoacoustic testing systems will be presented. The design of the wired system utilizes a USB audio I/O controller chip for communicating with the application software on the host through a USB cable. The wireless system includes two units: a transmitter and a receiver. 2.4GHz RF transceiver chips are employed for wireless communication. Double-side PCBs populated with 0603 SMD were designed and fabricated. To go along with the hardware, software was developed on a handheld device to control and execute several psychoacoustic tests and to log subjective data. Objective measurements and small scale clinical trials were undertaken to test the efficiency of the proposed portable systems

    On Research Challenges in Hybrid Medium Access Control Protocols for IEEE 802.15.6 WBANs

    Get PDF
    IEEE 802.15.6 is a Wireless Body Area Network (WBAN) standard proposed to facilitate the exponentially growing interest in the field of health monitoring. This standard is flexible and outlines multiple basic Medium Access Control (MAC) protocols that are contention based and collision free to meet the WBAN Quality of Service (QoS) challenges. Typically, current research trends in WBAN MAC focus on designing a hybrid MAC that is a combination of basic MAC protocols. In this paper, we provide a first detailed survey of existing hybrid MAC protocols based on IEEE 802.15.6 which would be useful for the related research community. Firstly, the paper lists the design challenges of a WBAN MAC. Secondly, it highlights the significance of hybrid MAC protocols in meeting the design challenges while comparing them to standard MAC protocols. Thirdly, a critical and thorough comparison of existing hybrid MAC protocols is presented in terms of network QoS and WBAN specific parameters. Lastly, we identify key open research areas that are often neglected in hybrid MAC design and further propose some possible directions for future research

    Design of a High Capacity, Scalable, and Green Wireless Communication System Leveraging the Unlicensed Spectrum

    Get PDF
    The stunning demand for mobile wireless data that has been recently growing at an exponential rate requires a several fold increase in spectrum. The use of unlicensed spectrum is thus critically needed to aid the existing licensed spectrum to meet such a huge mobile wireless data traffic growth demand in a cost effective manner. The deployment of Long Term Evolution (LTE) in the unlicensed spectrum (LTE-U) has recently been gaining significant industry momentum. The lower transmit power regulation of the unlicensed spectrum makes LTE deployment in the unlicensed spectrum suitable only for a small cell. A small cell utilizing LTE-L (LTE in licensed spectrum), and LTE-U (LTE in unlicensed spectrum) will therefore significantly reduce the total cost of ownership (TCO) of a small cell, while providing the additional mobile wireless data offload capacity from Macro Cell to small cell in LTE Heterogeneous Networks (HetNet), to meet such an increase in wireless data demand. The U.S. 5 GHz Unlicensed National Information Infrastructure (U-NII) bands that are currently under consideration for LTE deployment in the unlicensed spectrum contain only a limited number of 20 MHZ channels. Thus in a dense multi-operator deployment scenario, one or more LTE-U small cells have to co-exist and share the same 20 MHz unlicensed channel with each other and with the incumbent Wi-Fi. This dissertation presents a proactive small cell interference mitigation strategy for improving the spectral efficiency of LTE networks in the unlicensed spectrum. It describes the scenario and demonstrate via simulation results, that in the absence of an explicit interference mitigation mechanism, there will be a significant degradation in the overall LTE-U system performance for LTE-U co-channel co-existence in countries such as U.S. that do not mandate Listen-Before-Talk (LBT) regulations. An unlicensed spectrum Inter Cell Interference Coordination (usICIC) mechanism is then presented as a time-domain multiplexing technique for interference mitigation for the sharing of an unlicensed channel by multi-operator LTE-U small cells. Through extensive simulation results, it is demonstrated that the proposed usICIC mechanism will result in 40% or more improvement in the overall LTE-U system performance (throughput) leading to increased wireless communication system capacity. The ever increasing demand for mobile wireless data is also resulting in a dramatic expansion of wireless network infrastructure by all service providers resulting in significant escalation in energy consumption by the wireless networks. This not only has an impact on the recurring operational expanse (OPEX) for the service providers, but importantly the resulting increase in greenhouse gas emission is not good for the environment. Energy efficiency has thus become one of the critical tenets in the design and deployment of Green wireless communication systems. Consequently the market trend for next-generation communication systems has been towards miniaturization to meet this stunning ever increasing demand for mobile wireless data, leading towards the need for scalable distributed and parallel processing system architecture that is energy efficient, and high capacity. Reducing cost and size while increasing capacity, ensuring scalability, and achieving energy efficiency requires several design paradigm shifts. This dissertation presents the design for a next generation wireless communication system that employs new energy efficient distributed and parallel processing system architecture to achieve these goals while leveraging the unlicensed spectrum to significantly increase (by a factor of two) the capacity of the wireless communication system. This design not only significantly reduces the upfront CAPEX, but also the recurring OPEX for the service providers to maintain their next generation wireless communication networks

    Performance analysis and application development of hybrid WiMAX-WiFi IP video surveillance systems

    Get PDF
    Traditional Closed Circuit Television (CCTV) analogue cameras installed in buildings and other areas of security interest necessitates the use of cable lines. However, analogue systems are limited by distance; and storing analogue data requires huge space or bandwidth. Wired systems are also prone to vandalism, they cannot be installed in a hostile terrain and in heritage sites, where cabling would distort original design. Currently, there is a paradigm shift towards wireless solutions (WiMAX, Wi-Fi, 3G, 4G) to complement and in some cases replace the wired system. A wireless solution of the Fourth-Generation Surveillance System (4GSS) has been proposed in this thesis. It is a hybrid WiMAX-WiFi video surveillance system. The performance analysis of the hybrid WiMAX-WiFi is compared with the conventional WiMAX surveillance models. The video surveillance models and the algorithm that exploit the advantages of both WiMAX and Wi-Fi for scenarios of fixed and mobile wireless cameras have been proposed, simulated and compared with the mathematical/analytical models. The hybrid WiMAX-WiFi video surveillance model has been extended to include a Wireless Mesh configuration on the Wi-Fi part, to improve the scalability and reliability. A performance analysis for hybrid WiMAX-WiFi system with an appropriate Mobility model has been considered for the case of mobile cameras. A security software application for mobile smartphones that sends surveillance images to either local or remote servers has been developed. The developed software has been tested, evaluated and deployed in low bandwidth Wi-Fi wireless network environments. WiMAX is a wireless metropolitan access network technology that provides broadband services to the connected customers. Major modules and units of WiMAX include the Customer Provided Equipment (CPE), the Access Service Network (ASN) which consist one or more Base Stations (BS) and the Connectivity Service Network (CSN). Various interfaces exist between each unit and module. WiMAX is based on the IEEE 802.16 family of standards. Wi-Fi, on the other hand, is a wireless access network operating in the local area network; and it is based on the IEEE 802.11 standards
    corecore