2,563 research outputs found

    A Pan-Function Model for the Utilization of Bandwidth Improvement and PAPR Reduction

    Get PDF
    Aiming at the digital quadrature modulation system, a mathematical Pan-function model of the optimized baseband symbol signals with a symbol length of 4T was established in accordance with the minimum out-band energy radiation criterion. The intersymbol interference (ISI), symbol-correlated characteristics, and attenuation factor were introduced to establish the mathematical Pan-function model. The Pan-function was added to the constraints of boundary conditions, energy of a single baseband symbol signal, and constant-envelope conditions. Baseband symbol signals with the optimum efficient spectrum were obtained by introducing Fourier series and minimizing the Pan-function. The characteristics of the spectrum and peak-to-average power ratio (PAPR) of the obtained signals were analyzed and compared with the minimum shift keying (MSK) and quadrature phase-shift keying (QPSK) signals. The obtained signals have the characteristics of a higher spectral roll-off rate, less out-band radiation, and quasi-constant envelope. We simulated the performance of the obtained signals, and the simulation results demonstrate that the method is feasible

    Analog dithering techniques for highly linear and efficient transmitters

    Get PDF
    The current thesis is about investigation of new methods and techniques to be able to utilize the switched mode amplifiers, for linear and efficient applications. Switched mode amplifiers benefit from low overlap between the current and voltage wave forms in their output terminals, but they seriously suffer from nonlinearity. This makes it impossible to use them to amplify non-constant envelope message signals, where very high linearity is expected. In order to do that, dithering techniques are studied and a full linearity analysis approach is developed, by which the linearity performance of the dithered amplifier can be analyzed, based on the dithering level and frequency. The approach was based on orthogonalization of the equivalent nonlinearity and is capable of prediction of both co-channel and adjacent channel nonlinearity metrics, for a Gaussian complex or real input random signal. Behavioral switched mode amplifier models are studied and new models are developed, which can be utilized to predict the nonlinear performance of the dithered power amplifier, including the nonlinear capacitors effects. For HFD application, self-oscillating and asynchronous sigma delta techniques are currently used, as pulse with modulators (PWM), to encode a generic RF message signal, on the duty cycle of an output pulse train. The proposed models and analysis techniques were applied to this architecture in the first phase, and the method was validated with measurement on a prototype sample, realized in 65 nm TSMC CMOS technology. Afterwards, based on the same dithering phenomenon, a new linearization technique was proposed, which linearizes the switched mode class D amplifier, and at the same time can reduce the reactive power loss of the amplifier. This method is based on the dithering of the switched mode amplifier with frequencies lower than the band-pass message signal and is called low frequency dithering (LFD). To test this new technique, two test circuits were realized and the idea was applied to them. Both of the circuits were of the hard nonlinear type (class D) and are integrated CMOS and discrete LDMOS technologies respectively. The idea was successfully tested on both test circuits and all of the linearity metric predictions for a digitally modulated RF signal and a random signal were compared to the measurements. Moreover a search method to find the optimum dither frequency was proposed and validated. Finally, inspired by averaging interpretation of the dithering phenomenon, three new topologies were proposed, which are namely DLM, RF-ADC and area modulation power combining, which are all nonlinear systems linearized with dithering techniques. A new averaging method was developed and used for analysis of a Gilbert cell mixer topology, which resulted in a closed form relationship for the conversion gain, for long channel devices

    A digital polar transmitter for multi-band OFDM Ultra-WideBand

    No full text
    Linear power amplifiers used to implement the Ultra-Wideband standard must be backed off from optimum power efficiency to meet the standard specifications and the power efficiency suffers. The problem of low efficiency can be mitigated by polar modulation. Digital polar architectures have been employed on numerous wireless standards like GSM, EDGE, and WLAN, where the fractional bandwidths achieved are only about 1%, and the power levels achieved are often in the vicinity of 20 dBm. Can the architecture be employed on wireless standards with low-power and high fractional bandwidth requirements and yet achieve good power efficiency? To answer these question, this thesis studies the application of a digital polar transmitter architecture with parallel amplifier stages for UWB. The concept of the digital transmitter is motivated and inspired by three factors. First, unrelenting advances in the CMOS technology in deep-submicron process and the prevalence of low-cost Digital Signal processing have resulted in the realization of higher level of integration using digitally intensive approaches. Furthermore, the architecture is an evolution of polar modulation, which is known for high power efficiency in other wireless applications. Finally, the architecture is operated as a digital-to-analog converter which circumvents the use of converters in conventional transmitters. Modeling and simulation of the system architecture is performed on the Agilent Advanced Design System Ptolemy simulation platform. First, by studying the envelope signal, we found that envelope clipping results in a reduction in the peak-to-average power ratio which in turn improves the error vector magnitude performance (figure of merit for the study). In addition, we have demonstrated that a resolution of three bits suffices for the digital polar transmitter when envelope clipping is performed. Next, this thesis covers a theoretical derivation for the estimate of the error vector magnitude based on the resolution, quantization and phase noise errors. An analysis on the process variations - which result in gain and delay mismatches - for a digital transmitter architecture with four bits ensues. The above studies allow RF designers to estimate the number of bits required and the amount of distortion that can be tolerated in the system. Next, a study on the circuit implementation was conducted. A DPA that comprises 7 parallel RF amplifiers driven by a constant RF phase-modulated signal and 7 cascode transistors (individually connected in series with the bottom amplifiers) digitally controlled by a 3-bit digitized envelope signal to reconstruct the UWB signal at the output. Through the use of NFET models from the IBM 130-nm technology, our simulation reveals that our DPA is able to achieve an EVM of - 22 dB. The DPA simulations have been performed at 3.432 GHz centre frequency with a channel bandwidth of 528 MHz, which translates to a fractional bandwidth of 15.4%. Drain efficiencies of 13.2/19.5/21.0% have been obtained while delivering -1.9/2.5/5.5 dBm of output power and consuming 5/9/17 mW of power. In addition, we performed a yield analysis on the digital polar amplifier, based on unit-weighted and binary-weighted architecture, when gain variations are introduced in all the individual stages. The dynamic element matching method is also introduced for the unit-weighted digital polar transmitter. Monte Carlo simulations reveal that when the gain of the amplifiers are allowed to vary at a mean of 1 with a standard deviation of 0.2, the binary-weighted architecture obtained a yield of 79%, while the yields of the unit-weighted architectures are in the neighbourhood of 95%. Moreover, the dynamic element matching technique demonstrates an improvement in the yield by approximately 3%. Finally, a hardware implementation for this architecture based on software-defined arbitrary waveform generators is studied. In this section, we demonstrate that the error vector magnitude results obtained with a four-stage binary-weighted digital polar transmitter under ideal combining conditions fulfill the European Computer Manufacturers Association requirements. The proposed experimental setup, believed to be the first ever attempted, confirm the feasibility of a digital polar transmitter architecture for Ultra-Wideband. In addition, we propose a number of power combining techniques suitable for the hardware implementation. Spatial power combining, in particular, shows a high potential for the digital polar transmitter architecture. The above studies demonstrate the feasibility of the digital polar architecture with good power efficiency for a wideband wireless standard with low-power and high fractional bandwidth requirements
    • …
    corecore