6,822 research outputs found

    Compressive Sensing Theory for Optical Systems Described by a Continuous Model

    Full text link
    A brief survey of the author and collaborators' work in compressive sensing applications to continuous imaging models.Comment: Chapter 3 of "Optical Compressive Imaging" edited by Adrian Stern published by Taylor & Francis 201

    Projection-Based and Look Ahead Strategies for Atom Selection

    Full text link
    In this paper, we improve iterative greedy search algorithms in which atoms are selected serially over iterations, i.e., one-by-one over iterations. For serial atom selection, we devise two new schemes to select an atom from a set of potential atoms in each iteration. The two new schemes lead to two new algorithms. For both the algorithms, in each iteration, the set of potential atoms is found using a standard matched filter. In case of the first scheme, we propose an orthogonal projection strategy that selects an atom from the set of potential atoms. Then, for the second scheme, we propose a look ahead strategy such that the selection of an atom in the current iteration has an effect on the future iterations. The use of look ahead strategy requires a higher computational resource. To achieve a trade-off between performance and complexity, we use the two new schemes in cascade and develop a third new algorithm. Through experimental evaluations, we compare the proposed algorithms with existing greedy search and convex relaxation algorithms.Comment: sparsity, compressive sensing; IEEE Trans on Signal Processing 201

    Support Recovery of Sparse Signals

    Full text link
    We consider the problem of exact support recovery of sparse signals via noisy measurements. The main focus is the sufficient and necessary conditions on the number of measurements for support recovery to be reliable. By drawing an analogy between the problem of support recovery and the problem of channel coding over the Gaussian multiple access channel, and exploiting mathematical tools developed for the latter problem, we obtain an information theoretic framework for analyzing the performance limits of support recovery. Sharp sufficient and necessary conditions on the number of measurements in terms of the signal sparsity level and the measurement noise level are derived. Specifically, when the number of nonzero entries is held fixed, the exact asymptotics on the number of measurements for support recovery is developed. When the number of nonzero entries increases in certain manners, we obtain sufficient conditions tighter than existing results. In addition, we show that the proposed methodology can deal with a variety of models of sparse signal recovery, hence demonstrating its potential as an effective analytical tool.Comment: 33 page
    • …
    corecore