9 research outputs found

    Orthogonal multicarrier modulation for high-rates mobile and wireless communications

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN037085 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Performance of optimum wavelet waveform for DS-CDMA chip waveform over QS-AWGN channel

    No full text
    In this paper, we search for a better chip waveform based on orthogonal wavelets for direct sequence-code division multiple access (DS-CDMA) signals to improve the probability of error (Pe) performance with minimal signal bandwidth variations. First, we derive the Pe expression over a quasi-synchronous additive white Gaussian noise channel for DS-CDMA signals, which use various pulse shaping waveforms including orthogonal wavelets as chip waveforms. It is observed that this expression depends on the chip waveform. Then, we design an optimum wavelet by using the relationship between wavelets and filter coefficients to reduce the probability of error. The DS-CDMA system using the optimum wavelet waveform results in a lower probability of error than those using the conventional chip waveforms such as raised cosine, half-sine and rectangular waveforms. Especially, the Pe of the optimum wavelet-based scheme becomes significantly better than those of the conventional chip waveforms-based schemes under the heavy loading that is the case for commercial wireless systems. When the systems work with full load (i.e. the number of users equals the processing gain), the optimum wavelet-based system results in 0.5, 2.1 and 4 dB better SNR values than those of the raised cosine, half-sine and rectangular-based systems, respectively, for a Pe value of 10-3. Copyright © 2005 John Wiley & Sons, Ltd

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC)

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Performance comparison of optimum wavelet and raised cosine based DS-CDMA signals by using simulations [Optimum dalgacik ve yükseltilmiş kosinüs kullanan DD-KBÇE işaretlerin performanslarinin simülasyon ile karşilaştirilmasi]

    No full text
    IEEE 13th Signal Processing and Communications Applications Conference, SIU 2005 -- 16 May 2005 through 18 May 2005 -- Kayseri -- 69003In this work, the Bit Error Rates (BER) of two DirectSequence Code Division Multiple Access (DS-CDMA) signals that use raised cosine and an optimum wavelet waveform, respectively, as chip waveforms are compared over a Quasi-Synchronous Additive White Gaussian Noise (QS-AWGN) channel by using simulations. Considering the number of users in the simulations, there are two cases; lightly loaded case and medium loaded case. For both cases, optimum wavelet gives better BER performance values than those of raised cosine. For the lightly loaded case, optimum wavelet results in approximately 3 dB better signal to noise ratio value than that of raised cosine. © 2005 IEEE

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts
    corecore