454 research outputs found

    Signal Constellations for Multilevel Coded Modulation with Sparse Graph Codes

    Get PDF
    A method to combine error-correction coding and spectral efficient modulation for transmission over channels with Gaussian noise is presented. The method of modulation leads to a signal constellation in which the constellation symbols have a nonuniform distribution. This gives a so-called shape gain which can be as high as e 6 (1:5 dB). A sparse graph code is constructed which is based on a LDPC code and includes the method of modulation. An efficient decoding algorithm can be derived for this sparse graph code. Simulation results show that the performance of the code is quite good compared\ud to other coded modulation schemes proposed in literature

    Nonuniform Fuchsian codes for noisy channels

    Get PDF
    We develop a new transmission scheme for additive white Gaussian noisy (AWGN) channels based on Fuchsian groups from rational quaternion algebras. The structure of the proposed Fuchsian codes is nonlinear and nonuniform, hence conventional decoding methods based on linearity and symmetry do not apply. Previously, only brute force decoding methods with complexity that is linear in the code size exist for general nonuniform codes. However, the properly discontinuous character of the action of the Fuchsian groups on the complex upper half-plane translates into decoding complexity that is logarithmic in the code size via a recently introduced point reduction algorithm

    Multilevel Coded Modulation for Unequal Error Protection and Multistage Decoding—Part II: Asymmetric Constellations

    Get PDF
    In this paper, multilevel coded asymmetric modulation with multistage decoding and unequal error protection (UEP) is discussed. These results further emphasize the fact that unconventional signal set partitionings are more promising than traditional (Ungerboeck-type) partitionings, to achieve UEP capabilities with multilevel coding and multistage decoding. Three types of unconventional partitionings are analyzed for asymmetric 8-PSK and 16-QAM constellations over the additive white Gaussian noise channel to introduce design guidelines. Generalizations to other PSK and QAM type constellations follow the same lines. Upper bounds on the bit-error probability based on union bound arguments are first derived. In some cases, these bounds become loose due to the large overlappings of decision regions associated with asymmetric constellations and unconventional partitionings. To overcome this problem, simpler and tighter approximated bounds are derived. Based on these bounds, it is shown that additional refinements can be achieved in the construction of multilevel UEP codes, by introducing asymmetries in PSK and QAM signal constellations

    On the BICM Capacity

    Full text link
    Optimal binary labelings, input distributions, and input alphabets are analyzed for the so-called bit-interleaved coded modulation (BICM) capacity, paying special attention to the low signal-to-noise ratio (SNR) regime. For 8-ary pulse amplitude modulation (PAM) and for 0.75 bit/symbol, the folded binary code results in a higher capacity than the binary reflected gray code (BRGC) and the natural binary code (NBC). The 1 dB gap between the additive white Gaussian noise (AWGN) capacity and the BICM capacity with the BRGC can be almost completely removed if the input symbol distribution is properly selected. First-order asymptotics of the BICM capacity for arbitrary input alphabets and distributions, dimensions, mean, variance, and binary labeling are developed. These asymptotics are used to define first-order optimal (FOO) constellations for BICM, i.e. constellations that make BICM achieve the Shannon limit -1.59 \tr{dB}. It is shown that the \Eb/N_0 required for reliable transmission at asymptotically low rates in BICM can be as high as infinity, that for uniform input distributions and 8-PAM there are only 72 classes of binary labelings with a different first-order asymptotic behavior, and that this number is reduced to only 26 for 8-ary phase shift keying (PSK). A general answer to the question of FOO constellations for BICM is also given: using the Hadamard transform, it is found that for uniform input distributions, a constellation for BICM is FOO if and only if it is a linear projection of a hypercube. A constellation based on PAM or quadrature amplitude modulation input alphabets is FOO if and only if they are labeled by the NBC; if the constellation is based on PSK input alphabets instead, it can never be FOO if the input alphabet has more than four points, regardless of the labeling.Comment: Submitted to the IEEE Transactions on Information Theor

    Signal Shaping for BICM at Low SNR

    Get PDF
    The mutual information of bit-interleaved coded modulation (BICM) systems, sometimes called the BICM capacity, is investigated at low signal-to-noise ratio (SNR), i.e., in the wideband regime. A new linear transform that depends on bits' probabilities is introduced. This transform is used to prove the asymptotical equivalence between certain BICM systems with uniform and nonuniform input distributions. Using known results for BICM systems with a uniform input distribution, we completely characterize the combinations of input alphabet, input distribution, and binary labeling that achieve the Shannon limit -1.59 dB. The main conclusion is that a BICM system achieves the Shannon limit at low SNR if and only if it can be represented as a zero-mean linear projection of a hypercube, which is the same condition as for uniform input distributions. Hence, probabilistic shaping offers no extra degrees of freedom to optimize the low-SNR mutual information of BICM systems, in addition to what is provided by geometrical shaping. These analytical conclusions are confirmed by numerical results, which also show that for a fixed input alphabet, probabilistic shaping of BICM can improve the mutual information in the low and medium SNR range over any coded modulation system with a uniform input distribution

    Probabilistic Shaping for Finite Blocklengths: Distribution Matching and Sphere Shaping

    Get PDF
    In this paper, we provide for the first time a systematic comparison of distribution matching (DM) and sphere shaping (SpSh) algorithms for short blocklength probabilistic amplitude shaping. For asymptotically large blocklengths, constant composition distribution matching (CCDM) is known to generate the target capacity-achieving distribution. As the blocklength decreases, however, the resulting rate loss diminishes the efficiency of CCDM. We claim that for such short blocklengths and over the additive white Gaussian channel (AWGN), the objective of shaping should be reformulated as obtaining the most energy-efficient signal space for a given rate (rather than matching distributions). In light of this interpretation, multiset-partition DM (MPDM), enumerative sphere shaping (ESS) and shell mapping (SM), are reviewed as energy-efficient shaping techniques. Numerical results show that MPDM and SpSh have smaller rate losses than CCDM. SpSh--whose sole objective is to maximize the energy efficiency--is shown to have the minimum rate loss amongst all. We provide simulation results of the end-to-end decoding performance showing that up to 1 dB improvement in power efficiency over uniform signaling can be obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a discussion on the complexity of these algorithms from the perspective of latency, storage and computations.Comment: 18 pages, 10 figure

    Sensitivity Gains by Mismatched Probabilistic Shaping for Optical Communication Systems

    Get PDF
    Probabilistic shaping of quadrature amplitude modulation (QAM) is used to enhance the sensitivity of an optical communication system. Sensitivity gains of 0.43 dB and 0.8 dB are demonstrated in back-to-back experiments by shaping of 16QAM and 64QAM, respectively. Further, numerical simulations are used to prove the robustness of probabilistic shaping to a mismatch between the constellation used and the signal-to-noise ratio (SNR) of the channel. It is found that, accepting a 0.1 dB SNR penalty, only four shaping distributions are required to support these gains for 64QAM.Comment: Title and introduction were updated and the discussion of Section IV-B was extended. Additionally, some minor modifications were made to the manuscrip
    • …
    corecore