348 research outputs found

    Shaping spectral leakage for IEEE 802.11 p vehicular communications

    Get PDF
    IEEE 802.11p is a recently defined standard for the physical (PHY) and medium access control (MAC) layers for Dedicated Short-Range Communications. Four Spectrum Emission Masks (SEMs) are specified in 802.11p that are much more stringent than those for current 802.11 systems. In addition, the guard interval in 802.11p has been lengthened by reducing the bandwidth to support vehicular communication (VC) channels, and this results in a narrowing of the frequency guard. This raises a significant challenge for filtering the spectrum of 802.11p signals to meet the specifications of the SEMs. We investigate state of the art pulse shaping and filtering techniques for 802.11p, before proposing a new method of shaping the 802.11p spectral leakage to meet the most stringent, class D, SEM specification. The proposed method, performed at baseband to relax the strict constraints of the radio frequency (RF) front-end, allows 802.11p systems to be implemented using commercial off-the- shelf (COTS) 802.11a RF hardware, resulting in reduced total system cost

    Performance Of IEEE 802.11 OFDM With Multiple Frequency Transforms And Pulse Shaping Schemes

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is employed in various communication systems such as the IEEE 802.11 wireless standards, in which both frequency transform, Fast Fourier Transform (FFT) and pulse shaping filter, Square Root Raised Cosine (SRRC) are used. The main contribution of this paper is the analysis of the performance of different combinations of frequency transforms and pulse shaping schemes for the 802.11n standard. The frequency transforms which have been used are: Fast Fourier Transforms (FFT), Discrete Wavelet Transforms (DWT) and Discrete Hartley Transform (DHT). The pulse shaping filters are the Raised Cosine (RC), SRRC and Flipped Exponential Pulse (FEXP). The IEEE 802.11 WLAN system with Additive White Gaussian (AWGN) has been used as the modelling environment. The results showed that the DWT-based OFDM system has a better performance than the DHT and FFT schemes and upon comparing the pulse shaping filters, the SRRC filter outperforms the FEXP and RC filters

    Spectrally efficient emission mask shaping for OFDM cognitive radios

    Get PDF
    Orthogonal Frequency Division Multiplexing has been widely adopted in recent years due to its inherent spectral efficiency and robustness to impulsive noise and fading. For cognitive radio applications in particular, it can enable flexible and agile spectrum allocation, yet suffers from spectral leakage in the form of large side lobes, leading to inter-channel interference, unless mitigated carefully. Hence, recent OFDM-based standards such as 802.11p for vehicular communication and 802.11af for TV whitespace impose strict spectrum emission mask limits to combat adjacent channel interference. Stricter masks allow channels to operate closer together, improving spectral efficiency at the cost of implementation difficulty. Meeting the strict limits is a significant challenge for implementing both 802.11p and 802.11af, yet remains an important requirement for enabling cost-effective systems. This paper proposes a novel method that embeds baseband filtering within a cognitive radio architecture to meet the specification for the most stringent 802.11p and 802.11af masks, while allowing ten 802.11af sub-carriers to occupy a single basic channel without violating SEM specifications. The proposed method, performed at baseband, relaxes otherwise strict RF filter requirements, allowing the RF subsystem to be implemented using much less stringent 802.11a designs, allowing cost reductions

    WIMAX 802.16 PHYSICAL LAYER IMPLEMENTATION AND WIMAX COVERAGE AND PLANNING.

    Get PDF
    Over the last decade, the impact of wireless communication on the way we live and carry out business has been surpassed only by impact of the internet. But wireless communications is still in its infancy and the next stage of its development will be supplementing or replacing network infrastructure that was traditionally wired. The advent and adoption of the computer and the myriad software packages available for it offered the ability to generate a new wave of communication combining art, pictures, music and words into a targeted multimedia presentation. These presentations are large so that is requires higher bandwidth transmission facilities. Coupling this with the need for mobility, the solution would be wireless data delivery putting in consideration the bandwidth request. WiMAX technology is based on the IEEE 802.16 standard, it was only recently when the first IEEE 802.16 based equipment broadband began to enter the market. The additional spectrum, bandwidth and throughout capabilities of 802.16 will remarkably improve wireless data delivery and should allows even more wireless data service areas to be deployed economically. In this Final Year Project, a study about the IEEE 802.16 standard and mainly concentrate on the 802.16 PHY Layer behaviors was performed. A Simulink based model for the 802.16 PHY Layer was built for simulation and performance evaluation of WiMAX. MATLA

    Doctor of Philosophy

    Get PDF
    dissertationCross layer system design represents a paradigm shift that breaks the traditional layer-boundaries in a network stack to enhance a wireless network in a number of di erent ways. Existing work has used the cross layer approach to optimize a wireless network in terms of packet scheduling, error correction, multimedia quality, power consumption, selection of modulation/coding and user experience, etc. We explore the use of new cross layer opportunities to achieve secrecy and e ciency of data transmission in wireless networks. In the rst part of this dissertation, we build secret key establishment methods for private communication between wireless devices using the spatio-temporal variations of symmetric-wireless channel measurements. We evaluate our methods on a variety of wireless devices, including laptops, telosB sensor nodes, and Android smartphones, with diverse wireless capabilities. We perform extensive measurements in real-world environments and show that our methods generate high entropy secret bits at a signi cantly faster rate in comparison to existing approaches. While the rst part of this dissertation focuses on achieving secrecy in wireless networks, the second part of this dissertation examines the use of special pulse shaping lters of the lterbank multicarrier (FBMC) physical layer in reliably transmitting data packets at a very high rate. We rst analyze the mutual interference power across subcarriers used by di erent transmitters. Next, to understand the impact of FBMC beyond the physical layer, we devise a distributed and adaptive medium access control protocol that coordinates data packet tra c among the di erent nodes in the network in a best e ort manner. Using extensive simulations, we show that FBMC consistently achieves an order-of-magnitude performance improvement over orthogonal frequency division multiplexing (OFDM) in several aspects, including packet transmission delays, channel access delays, and e ective data transmission rate available to each node in static indoor settings as well as in vehicular networks

    Pulse shaping methods for inter carrier interference reduction in OFDM system

    Get PDF
    The weakness of the orthogonal freuency division multiplexing (OFDM) system is susceptible to the existence of carrier frequency offset (CFO) which causes the emergence of inter carrier interference (ICI) which causes a degradation of performance OFDM systems. This study aims to apply the suggested rectangular (REC) pulse and improved sinc-power (ISP) pulse shaping methods on OFDM system and determines ICI reduction with the effects of CFO over flat fading Rayleigh channels. The performance of each pulse shaping method is evaluated and compared based on parameter ICI power vs. normalized frequency offset, signal to interference ratio (SIR) vs. normalized frequency offset and bit error rate (BER) vs. energy bit per noise (Eb/No). The simulation result in terms of BER vs. Eb/No indicated that REC and ISP pulse shaping has better performance dealing with ICI reduction compared to OFDM system no applied pulse shaping. In addition, the ISP is able to mitigate ICI better than REC

    PAPR Reduction in Multicarrier Communication Systems Using Efficient Pulse Shaping Technique

    Get PDF
    Emerging multicarrier modulation schemes have been considered for the fifth generation (5G) communication systems. However, existing designs often suffer from a high peak-to-average power ratio (PAPR) in the transmitted signal. This thesis aims to (i) design pulse shaping filters to reduce the PAPR using computationally efficient optimisation approach (ii) investigate the performance of the multicarrier systems employing the designed filter and (iii) study the power utilisation efficiency of the nonlinear amplifier with the use of the designed filters

    Physical waveform research for beyond 52.6 GHz in 5G NR networks

    Get PDF
    Historically, in order to fulfil all the requirements for the new generations, the frequency bands have been expanded from generation to generation. In particular for the fifth generation new radio (5G NR), where the use of millimetre wave (mmWave) frequencies can offer higher bandwidths, communications in frequencies beyond 52.6 GHz seem really promising and are now under discussion in the 3rd Generation Partnership Project (3GPP) standardisation for the 5G NR future releases. More concretely, both academia and industry are doing research for the frequency range between 52.6 GHz and 114.25 GHz. The reasons why communications beyond 52.6 GHz are interesting is because in those frequencies, high data rate and low latency can be provided due to the large and contiguous channel bandwidth that is available. Also, new use cases can be explored in this frequency range since high accuracy positioning is possible at higher carrier frequencies, such as Orthogonal Frequency Division Multiplexing (OFDM) radar sensing, that allows new kinds of services. New challenges appear at higher frequencies, or other implementation issues that were not critical in lower frequencies start to become dominant and have to be taken into consideration while defining the new modulations and comparing the possible candidates. The main problems that have to be faced at higher frequencies are the poor propagation conditions (propagation losses are higher than in frequencies below 52.6 GHz), and the radio frequency (RF) impairments that electronic components may have, especially the lower power amplifier (PA) efficiency. Therefore, in order to have a good signal quality, if the peak to average power ratio (PAPR) of the original signal is high, the back-off should be high to make the PA work in the linear region. Thus, the waveform design has to be focused on generating signals with “nearly constant” envelope in order to be able to work closer to the saturation zone of the amplifier without distorting the signal. Also, another problem that has to be taken into account is the large phase noise (PN) present at these frequencies. The main goal of this work is the comparison between different modulations for discrete Fourier transform (DFT) Spread OFDM (DFTs-OFDM) in order to find a suitable candidate that can be part of the 5G NR communications for carrier frequencies beyond 52.6 GHz, and targeting specially low spectral efficiency (between 1 and 2 bps/Hz). Therefore, the main modulation references are pulse shaped π/2- binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) supported in 5G NR Release 15 up link (UL). In this Thesis, several modulation candidates have been tested under realistic conditions by using a 3GPP 5G NR compliant radio link simulator in Matlab. In order to find the best candidate, the waveforms should be able to present good characteristics that can overcome the problems present in mmWave communications. The main contribution of this thesis is to propose a new "constrained" phase shift keying (PSK) modulation, called CPSK, which applies a constraint to the symbols that are transmitted in order to reduce the PAPR of the signal. The results have shown that under the mmWave communications conditions (such as low PA efficiency and high PN), the new CPSK modulations can provide significant improvement with the evaluated PA model when compared to QPSK modulation, and together with extensive link level performance evaluations, a clear link budget gain can also be shown for specific CPSK modulation candidates and pulse shaped π/2-BPSK

    Orthogonal Frequency Division Multiplexing modulation and inter-carrier interference cancellation

    Get PDF
    The Orthogonal Frequency Division Multiplexing (OFDM) technique, wireless channel models, and a pair of new intercarrier interference self-cancellation methods are investigated in this thesis. The first chapter addresses the history of OFDM, along with its principles and applications. Chapter two consists of three parts: the principal, the modern OFDM models, and the Peak to Average Power Ratio (PAPR) problem. Chapter two also summarizes possible PAPR solutions. Chapter three discusses a series of well-known wireless channel models, as well as the general formula for wireless channels. In Chapter four, ICI problem has been discussed, along with its existing solutions. Chapter five focuses on two new ICI self-cancellation schemes, namely the clustering method and the multi-codebook method. These two new methods show promising results through the simulations. A summary of this thesis and the discussion of future research are also provided in Chapter five
    • …
    corecore