627 research outputs found

    Performance Analysis of Selection Combining Over Correlated Nakagami-m Fading Channels with Constant Correlation Model for Desired Signal and Cochannel Interference

    Get PDF
    A very efficient technique that reduces fading and channel interference influence is selection diversity based on the signal to interference ratio (SIR). In this pa¬per, system performances of selection combiner (SC) over correlated Nakagami-m channels with constant correlation model are analyzed. Closed-form expressions are obtained for the output SIR probability density function (PDF) and cumulative distribution function (CDF) which is main contribution of this paper. Outage probability and the average error probability for coherent, noncoherent modulation are derived. Numerical results presented in this paper point out the effects of fading severity and cor¬relation on the system performances. The main contribu¬tion of this analysis for multibranch signal combiner is that it has been done for general case of correlated co-channel interference (CCI)

    Dual-Branch MRC Receivers under Spatial Interference Correlation and Nakagami Fading

    Full text link
    Despite being ubiquitous in practice, the performance of maximal-ratio combining (MRC) in the presence of interference is not well understood. Because the interference received at each antenna originates from the same set of interferers, but partially de-correlates over the fading channel, it possesses a complex correlation structure. This work develops a realistic analytic model that accurately accounts for the interference correlation using stochastic geometry. Modeling interference by a Poisson shot noise process with independent Nakagami fading, we derive the link success probability for dual-branch interference-aware MRC. Using this result, we show that the common assumption that all receive antennas experience equal interference power underestimates the true performance, although this gap rapidly decays with increasing the Nakagami parameter mIm_{\text{I}} of the interfering links. In contrast, ignoring interference correlation leads to a highly optimistic performance estimate for MRC, especially for large mIm_{\text{I}}. In the low outage probability regime, our success probability expression can be considerably simplified. Observations following from the analysis include: (i) for small path loss exponents, MRC and minimum mean square error combining exhibit similar performance, and (ii) the gains of MRC over selection combining are smaller in the interference-limited case than in the well-studied noise-limited case.Comment: to appear in IEEE Transactions on Communication

    Maximal Ratio Transmission in Wireless Poisson Networks under Spatially Correlated Fading Channels

    Full text link
    The downlink of a wireless network where multi-antenna base stations (BSs) communicate with single-antenna mobile stations (MSs) using maximal ratio transmission (MRT) is considered here. The locations of BSs are modeled by a homogeneous Poisson point process (PPP) and the channel gains between the multiple antennas of each BS and the single antenna of each MS are modeled as spatially arbitrarily correlated Rayleigh random variables. We first present novel closed-form expressions for the distribution of the power of the interference resulting from the coexistence of one intended and one unintended MRT over the considered correlated fading channels. The derived expressions are then used to obtain closed-form expressions for the success probability and area spectral efficiency of the wireless communication network under investigation. Simulation results corroborate the validity of the presented expressions. A key result of this work is that the effect of spatial correlation on the network throughput may be contrasting depending on the density of BSs, the signal-to-interference-plus-noise ratio (SINR) level, and the background noise power.Comment: 6 pages, 6 figures, IEEE GLOBECOM 201

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain
    • …
    corecore