79 research outputs found

    EXIT Chart Based Joint Code-Rate and Spreading-Factor Optimisation of Single-Carrier Interleave Division Multiple Access

    No full text
    Abstract—In this paper, we consider the joint code-rate and spreading-factor optimisation of turbo-style iterative joint detection and decoding assisted single-carrier interleave division multiple access (SC-IDMA) systems using different-rate convolutional codes and Extrinsic Information Transfer (EXIT) charts, when communicating over Additive White Gaussian Noise (AWGN) channels. More explicitly, we study the extrinsic information exchange between two serial concatenated components and maximise the number of users supported by the SC-IDMA system under the constraint of a fixed bandwidth expansion factor, while maintaining a predefined Bit Error Ratio (BER) versus Eb/N0 performance. We found that an optimum coderate and spreading-factor combination can be found for the SC-IDMA system at low Eb/N0 values, where maintaining a low BER inevitably requires the employment of channel coding. By contrast, at high Eb/N0 the system performs best, when no channel coding is used, i.e. DS-spreading is the only means of bandwidth expansion

    Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Get PDF
    The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA) related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks

    Quantum-aided multi-user transmission in non-orthogonal multiple access systems

    No full text
    With the research on implementing a universal quantum computer being under the technological spotlight, new possibilities appear for their employment in wireless communications systems for reducing their complexity and improving their performance. In this treatise, we consider the downlink of a rank-deficient, multi-user system and we propose the discrete-valued and continuous-valued Quantum-assisted Particle Swarm Optimization (QPSO) algorithms for performing Vector Perturbation (VP) precoding, as well as for lowering the required transmission power at the Base Station (BS), while minimizing the expected average Bit Error Ratio (BER) at the mobile terminals. We use the Minimum BER (MBER) criterion. We show that the novel quantum-assisted precoding methodology results in an enhanced BER performance, when compared to that of a classical methodology employing the PSO algorithm, while requiring the same computational complexity in the challenging rank-deficient scenarios, where the number of transmit antenna elements at the BS is lower than the number of users. Moreover, when there is limited Channel State Information (CSI) feedback from the users to the BS, due to the necessary quantization of the channel states, the proposed quantum-assisted precoder outperforms the classical precoder

    Investigation on iterative multiuser detection physical layer network coding in two-way relay free-space optical links with turbulences and pointing errors

    Get PDF
    Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading, and pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity

    Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Get PDF
    The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA) related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks

    Iterative Detection for Overloaded Multiuser MIMO OFDM Systems

    Get PDF
    Inspired by multiuser detection (MUD) and the ‘Turbo principle’, this thesis deals with iterative interference cancellation (IIC) in overloaded multiuser multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Linear detection schemes, such as zero forcing (ZF) and minimum mean square error (MMSE) cannot be used for the overloaded system because of the rank deficiency of channel matrix, while the optimal approach, the maximum likelihood (ML) detection has high computational complexity. In this thesis, an iterative interference cancellation (IIC) multiuser detection scheme with matched filter and convolutional codes is considered. The main idea of this combination is a low complexity receiver. Parallel interference cancellation (PIC) is employed to improve the multiuser receiver performance for overloaded systems. A log-likelihood ratio (LLR) converter is proposed to further improve the reliability of the soft value converted from the output of the matched filter. Simulation results show that the bit error rate (BER) performance of this method is close to the optimal approach for a two user system. However, for the four user or more user system, it has an error floor of the BER performance. For this case, a channel selection scheme is proposed to distinguish whether the channel is good or bad by using the mutual information based on the extrinsic information transfer (EXIT) chart. The mutual information can be predicted in a look-up table which greatly reduces the complexity. For those ‘bad’ channels identified by the channel selection, we introduce two adaptive transmission methods to deal with such channels: one uses a lower code rate, and the other is multiple transmissions. The use of an IIC receiver with the interleave-division multiple access (IDMA) to further improve the BER performance without any channel selection is also investigated. It has been shown that this approach can remove the error floor. Finally, the influence of channel accuracy on the IIC is investigated. Pilot-based Wiener filter channel estimation is used to test and verify how much the IIC is influenced by the channel accuracy

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Ieee access special section editorial: Cloud and big data-based next-generation cognitive radio networks

    Get PDF
    In cognitive radio networks (CRN), secondary users (SUs) are required to detect the presence of the licensed users, known as primary users (PUs), and to find spectrum holes for opportunistic spectrum access without causing harmful interference to PUs. However, due to complicated data processing, non-real-Time information exchange and limited memory, SUs often suffer from imperfect sensing and unreliable spectrum access. Cloud computing can solve this problem by allowing the data to be stored and processed in a shared environment. Furthermore, the information from a massive number of SUs allows for more comprehensive information exchanges to assist the

    Lightly synchronized Multipacket Reception in Machine-Type Communications Networks

    Get PDF
    Machine Type Communication (MTC) applications were designed to monitor and control elements of our surroundings and environment. MTC applications have a different set of requirements compared to the traditional communication devices, with Machine to Machine (M2M) data being mostly short, asynchronous, bursty and sometimes requiring end-to-end delays below 1ms. With the growth of MTC, the new generation of mobile communications has to be able to present different types of services with very different requirements, i.e. the same network has to be capable of "supplying" connection to the user that just wants to download a video or use social media, allowing at the same time MTC that has completely different requirements, without deteriorating both experiences. The challenges associated to the implementation of MTC require disruptive changes at the Physical (PHY) and Medium Access Control (MAC) layers, that lead to a better use of the spectrum available. The orthogonality and synchronization requirements of the PHY layer of current Long Term Evolution Advanced (LTE-A) radio access network (based on glsofdm and Single Carrier Frequency Domain Equalization (SC-FDE)) are obstacles for this new 5th Generation (5G) architecture. Generalized Frequency Division Multiplexing (GFDM) and other modulation techniques were proposed as candidates for the 5G PHY layer, however they also suffer from visible degradation when the transmitter and receiver are not synchronized, leading to a poor performance when collisions occur in an asynchronous MAC layer. This dissertation addresses the requirements of M2M traffic at the MAC layer applying multipacket reception (MPR) techniques to handle the bursty nature of the traffic and synchronization tones and optimized back-off approaches to reduce the delay. It proposes a new MAC protocol and analyses its performance analytically considering an SC-FDE modulation. The models are validated using a system level cross-layer simulator developed in MATLAB, which implements the MAC protocol and applies PHY layer performance models. The results show that the MAC’s latency depends mainly on the number of users and the load of each user, and can be controlled using these two parameters

    Performance analysis of biological resource allocation algorithms for next generation networks.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF.Publications listed on page iii
    corecore