16 research outputs found

    Resource Allocation in Service Area based Networks

    Get PDF
    By applying joint transmission in the downlink and joint detection in the uplink, the novel service area architecture allows multiple mobile stations to be simultaneously active on the same OFDM subcarrier without causing interference to each other. Moreover, the proposed adaptive subcarrier and power allocation techniques are shown to be able to improve the spectral efficiency significantly in service area based networks. The significance of the frequency selectivity of wireless channels, the correlation among users’ spatial signatures and the presence of interferences to resource allocation is also assessed through simulations.Durch den Einsatz von Joint Detection in der Aufwärtsstrecke und Joint Transmission in der Abwärtsstrecke ermöglicht die neuartige Service Area Architektur es mehreren Mobilstationen in dem selben OFDM-Subträger gleichzeitig interferenzfrei aktiv zu sein. Darüber hinaus wrid gezeigt, dass die vorgeschlagenen adaptiven Subträger- und Leistungsallokationstechniken die spektrale Effizienz eines Service Area basierten Mobilfunksystems erheblich erhöhen können. Die Bedeutung der Frequnzselektivität der Funkkanäle, der Korrelation zwischen räumlichen Signaturen der Teinehmer und der Existenz der Interferenz für die adaptive Ressourcenallokation wird ebenfalls durch Computersimulationen bewertet

    Antenna subset selection for cyclic prefix assisted MIMO wireless communications over frequency selective channels

    Get PDF
    Antenna (subset) selection techniques are feasible to reduce the hardware complexity of multiple-input multiple-output (MIMO) systems, while keeping the benefits of higher-order MIMO systems. Many studies of antenna selection schemes are based on frequency-flat channel models, which are inconsistent to broadband MIMO systems employing spatial-multiplexing. In broadband MIMO systems aiming to provide high-data-rate links, the employed signal bandwidth is typically larger than the coherence bandwidth of the channel so that the channel will be of frequency selective nature. Within this contribution we provide an overview on joint transmitter- and receiver-side antenna subset selection methods for frequency selective channels and deploy them in MIMO orthogonal frequency division multiplexing (OFDM) systems and MIMO single-carrier (SC) systems employing frequency domain equalization (FDE).DFG/KA 1154/1

    Low-complexity antenna selection techniques for massive MIMO systems

    Get PDF
    PhD ThesisMassive Multiple-Input Multiple-Output (M-MIMO) is a state of the art technology in wireless communications, where hundreds of antennas are exploited at the base station (BS) to serve a much smaller number of users. Employing large antenna arrays can improve the performance dramatically in terms of the achievable rates and radiated energy, however, it comes at the price of increased cost, complexity, and power consumption. To reduce the hardware complexity and cost, while maintaining the advantages of M-MIMO, antenna selection (AS) techniques can be applied where only a subset of the available antennas at the BS are selected. Optimal AS can be obtained through exhaustive search, which is suitable for conventional MIMO systems, but is prohibited for systems with hundreds of antennas due to its enormous computational complexity. Therefore, this thesis address the problem of designing low complexity AS algorithms for multi-user (MU) M-MIMO systems. In chapter 3, different evolutionary algorithms including bio-inspired, quantuminspired, and heuristic methods are applied for AS in uplink MU M-MIMO systems. It was demonstrated that quantum-inspired and heuristic methods outperform the bio-inspired techniques in terms of both complexity and performance. In chapter 4, a downlink MU M-MIMO scenario is considered with Matched Filter (MF) precoding. Two novel AS algorithms are proposed where the antennas are selected without any vector multiplications, which resulted in a dramatic complexity reduction. The proposed algorithms outperform the case where all antennas are activated, in terms of both energy and spectral efficiencies. In chapter 5, three AS algorithms are designed and utilized to enhance the performance of cell-edge users, alongside Max-Min power allocation control. The algorithms aim to either maximize the channel gain, or minimize the interference for the worst-case user only. The proposed methods in this thesis are compared with other low complexity AS schemes and showed a great performance-complexity trade-off

    High capacity multiuser multiantenna communication techniques

    Get PDF
    One of the main issues involved in the development of future wireless communication systems is the multiple access technique used to efficiently share the available spectrum among users. In rich multipath environment, spatial dimension can be exploited to meet the increasing number of users and their demands without consuming extra bandwidth and power. Therefore, it is utilized in the multiple-input multiple-output (MIMO) technology to increase the spectral efficiency significantly. However, multiuser MIMO (MU-MIMO) systems are still challenging to be widely adopted in next generation standards. In this thesis, new techniques are proposed to increase the channel and user capacity and improve the error performance of MU-MIMO over Rayleigh fading channel environment. For realistic system design and performance evaluation, channel correlation is considered as one of the main channel impurities due its severe influence on capacity and reliability. Two simple methods called generalized successive coloring technique (GSCT) and generalized iterative coloring technique (GICT) are proposed for accurate generation of correlated Rayleigh fading channels (CRFC). They are designed to overcome the shortcomings of existing methods by avoiding factorization of desired covariance matrix of the Gaussian samples. The superiority of these techniques is demonstrated by extensive simulations of different practical system scenarios. To mitigate the effects of channel correlations, a novel constellation constrained MU-MIMO (CC-MU-MIMO) scheme is proposed using transmit signal design and maximum likelihood joint detection (MLJD) at the receiver. It is designed to maximize the channel capacity and error performance based on principles of maximizing the minimum Euclidean distance (dmin) of composite received signals. Two signal design methods named as unequal power allocation (UPA) and rotation constellation (RC) are utilized to resolve the detection ambiguity caused by correlation. Extensive analysis and simulations demonstrate the effectiveness of considered scheme compared with conventional MU-MIMO. Furthermore, significant gain in SNR is achieved particularly in moderate to high correlations which have direct impact to maintain high user capacity. A new efficient receive antenna selection (RAS) technique referred to as phase difference based selection (PDBS) is proposed for single and multiuser MIMO systems to maximize the capacity over CRFC. It utilizes the received signal constellation to select the subset of antennas with highest (dmin) constellations due to its direct impact on the capacity and BER performance. A low complexity algorithm is designed by employing the Euclidean norm of channel matrix rows with their corresponding phase differences. Capacity analysis and simulation results show that PDBS outperforms norm based selection (NBS) and near to optimal selection (OS) for all correlation and SNR values. This technique provides fast RAS to capture most of the gains promised by multiantenna systems over different channel conditions. Finally, novel group layered MU-MIMO (GL-MU-MIMO) scheme is introduced to exploit the available spectrum for higher user capacity with affordable complexity. It takes the advantages of spatial difference among users and power control at base station to increase the number of users beyond the available number of RF chains. It is achieved by dividing the users into two groups according to their received power, high power group (HPG) and low power group (LPG). Different configurations of low complexity group layered multiuser detection (GL-MUD) and group power allocation ratio (η) are utilized to provide a valuable tradeoff between complexity and overall system performance. Furthermore, RAS diversity is incorporated by using NBS and a new selection algorithm called HPG-PDBS to increase the channel capacity and enhance the error performance. Extensive analysis and simulations demonstrate the superiority of proposed scheme compared with conventional MU-MIMO. By using appropriate value of (η), it shows higher sum rate capacity and substantial increase in the user capacity up to two-fold at target BER and SNR values

    Collaborative modulation multiple access for single hop and multihop networks

    Get PDF
    While the bandwidth available for wireless networks is limited, the world has seen an unprecedented growth in the number of mobile subscribers and an ever increasing demand for high data rates. Therefore efficient utilisation of bandwidth to maximise link spectral efficiency and number of users that can be served simultaneously are primary goals in the design of wireless systems. To achieve these goals, in this thesis, a new non-orthogonal uplink multiple access scheme which combines the functionalities of adaptive modulation and multiple access called collaborative modulation multiple access (CMMA) is proposed. CMMA enables multiple users to access the network simultaneously and share the same bandwidth even when only a single receive antenna is available and in the presence of high channel correlation. Instead of competing for resources, users in CMMA share resources collaboratively by employing unique modulation sets (UMS) that differ in phase, power, and/or mapping structure. These UMS are designed to insure that the received signal formed from the superposition of all users’ signals belongs to a composite QAM constellation (CC) with a rate equal to the sum rate of all users. The CC and its constituent UMSs are designed centrally at the BS to remove ambiguity, maximize the minimum Euclidian distance (dmin) of the CC and insure a minimum BER performance is maintained. Users collaboratively precode their transmitted signal by performing truncated channel inversion and phase rotation using channel state information (CSI ) obtained from a periodic common pilot to insure that their combined signal at the BS belongs to the CC known at the BS which in turn performs a simple joint maximum likelihood detection without the need for CSI. The coherent addition of users’ power enables CMMA to achieve high link spectral efficiency at any time without extra power or bandwidth but on the expense of graceful degradation in BER performance. To improve the BER performance of CMMA while preserving its precoding and detection structure and without the need for pilot-aided channel estimation, a new selective diversity combining scheme called SC-CMMA is proposed. SC-CMMA optimises the overall group performance providing fairness and diversity gain for various users with different transmit powers and channel conditions by selecting a single antenna out of a group of L available antennas that minimises the total transmit power required for precoding at any one time. A detailed study of capacity and BER performance of CMMA and SC-CMMA is carried out under different level of channel correlations which shows that both offer high capacity gain and resilience to channel correlation. SC-CMMA capacity even increase with high channel correlation between users’ channels. CMMA provides a practical solution for implementing the multiple access adder channel (MAAC) in fading environments hence a hybrid approach combining both collaborative coding and modulation referred to as H-CMMA is investigated. H-CMMA divides users into a number of subgroups where users within a subgroup are assigned the same modulation set and different multiple access codes. H-CMMA adjusts the dmin of the received CC by varying the number of subgroups which in turn varies the number of unique constellation points for the same number of users and average total power. Therefore H-CMMA can accommodate many users with different rates while flexibly managing the complexity, rate and BER performance depending on the SNR. Next a new scheme combining CMMA with opportunistic scheduling using only partial CSI at the receiver called CMMA-OS is proposed to combine both the power gain of CMMA and the multiuser diversity gain that arises from users’ channel independence. To avoid the complexity and excessive feedback associated with the dynamic update of the CC, the BS takes into account the independence of users’ channels in the design of the CC and its constituent UMSs but both remain unchanged thereafter. However UMS are no longer associated with users, instead channel gain’s probability density function is divided into regions with identical probability and each UMS is associated with a specific region. This will simplify scheduling as users can initially chose their UMS based on their CSI and the BS will only need to resolve any collision when the channels of two or more users are located at the same region. Finally a high rate cooperative communication scheme, called cooperative modulation (CM) is proposed for cooperative multiuser systems. CM combines the reliability of the cooperative diversity with the high spectral efficiency and multiple access capabilities of CMMA. CM maintains low feedback and high spectral efficiency by restricting relaying to a single route with the best overall channel. Two possible variations of CM are proposed depending on whether CSI available only at the users or just at the BS and the selected relay. The first is referred to Precode, Amplify, and Forward (PAF) while the second one is called Decode, Remap, and Forward (DMF). A new route selection algorithm for DMF based on maximising dmin of random CC is also proposed using a novel fast low-complexity multi-stage sphere based algorithm to calculate the dmin at the relay of random CC that is used for both relay selection and detection

    Adaptive Communications for Next Generation Broadband Wireless Access Systems

    Get PDF
    Un dels aspectes claus en el disseny i gestió de les xarxes sense fils d'accés de banda ampla és l'ús eficient dels recursos radio. Des del punt de vista de l'operador, l'ample de banda és un bé escàs i preuat que s´ha d'explotar i gestionar de la forma més eficient possible tot garantint la qualitat del servei que es vol proporcionar. Per altra banda, des del punt de vista del usuari, la qualitat del servei ofert ha de ser comparable al de les xarxes fixes, requerint així un baix retard i una baixa pèrdua de paquets per cadascun dels fluxos de dades entre la xarxa i l'usuari. Durant els darrers anys s´han desenvolupat nombroses tècniques i algoritmes amb l'objectiu d'incrementar l'eficiència espectral. Entre aquestes tècniques destaca l'ús de múltiples antenes al transmissor i al receptor amb l'objectiu de transmetre diferents fluxos de dades simultaneament sense necessitat d'augmentar l'ample de banda. Per altra banda, la optimizació conjunta de la capa d'accés al medi i la capa física (fent ús de l'estat del canal per tal de gestionar de manera optima els recursos) també permet incrementar sensiblement l'eficiència espectral del sistema.L'objectiu d'aquesta tesi és l'estudi i desenvolupament de noves tècniques d'adaptació de l'enllaç i gestió dels recursos ràdio aplicades sobre sistemes d'accés ràdio de propera generació (Beyond 3G). Els estudis realitzats parteixen de la premissa que el transmisor coneix (parcialment) l'estat del canal i que la transmissió es realitza fent servir un esquema multiportadora amb múltiples antenes al transmisor i al receptor. En aquesta tesi es presenten dues línies d'investigació, la primera per casos d'una sola antenna a cada banda de l'enllaç, i la segona en cas de múltiples antenes. En el cas d'una sola antena al transmissor i al receptor, un nou esquema d'assignació de recursos ràdio i priorització dels paquets (scheduling) és proposat i analitzat integrant totes dues funcions sobre una mateixa entitat (cross-layer). L'esquema proposat té com a principal característica la seva baixa complexitat i que permet operar amb transmissions multimedia. Alhora, posteriors millores realitzades per l'autor sobre l'esquema proposat han permès també reduir els requeriments de senyalització i combinar de forma óptima usuaris d'alta i baixa mobilitat sobre el mateix accés ràdio, millorant encara més l'eficiència espectral del sistema. En cas d'enllaços amb múltiples antenes es proposa un nou esquema que combina la selecció del conjunt optim d'antenes transmissores amb la selecció de la codificació espai- (frequència-) temps. Finalment es donen una sèrie de recomanacions per tal de combinar totes dues línies d'investigació, així con un estat de l'art de les tècniques proposades per altres autors que combinen en part la gestió dels recursos ràdio i els esquemes de transmissió amb múltiples antenes.Uno de los aspectos claves en el diseño y gestión de las redes inalámbricas de banda ancha es el uso eficiente de los recursos radio. Desde el punto de vista del operador, el ancho de banda es un bien escaso y valioso que se debe explotar y gestionar de la forma más eficiente posible sin afectar a la calidad del servicio ofrecido. Por otro lado, desde el punto de vista del usuario, la calidad del servicio ha de ser comparable al ofrecido por las redes fijas, requiriendo así un bajo retardo y una baja tasa de perdida de paquetes para cada uno de los flujos de datos entre la red y el usuario. Durante los últimos años el número de técnicas y algoritmos que tratan de incrementar la eficiencia espectral en dichas redes es bastante amplio. Entre estas técnicas destaca el uso de múltiples antenas en el transmisor y en el receptor con el objetivo de poder transmitir simultáneamente diferentes flujos de datos sin necesidad de incrementar el ancho de banda. Por otro lado, la optimización conjunta de la capa de acceso al medio y la capa física (utilizando información de estado del canal para gestionar de manera óptima los recursos) también permite incrementar sensiblemente la eficiencia espectral del sistema.El objetivo de esta tesis es el estudio y desarrollo de nuevas técnicas de adaptación del enlace y la gestión de los recursos radio, y su posterior aplicación sobre los sistemas de acceso radio de próxima generación (Beyond 3G). Los estudios realizados parten de la premisa de que el transmisor conoce (parcialmente) el estado del canal a la vez que se considera que la transmisión se realiza sobre un sistema de transmisión multiportadora con múltiple antenas en el transmisor y el receptor. La tesis se centra sobre dos líneas de investigación, la primera para casos de una única antena en cada lado del enlace, y la segunda en caso de múltiples antenas en cada lado. Para el caso de una única antena en el transmisor y en el receptor, se ha desarrollado un nuevo esquema de asignación de los recursos radio así como de priorización de los paquetes de datos (scheduling) integrando ambas funciones sobre una misma entidad (cross-layer). El esquema propuesto tiene como principal característica su bajo coste computacional a la vez que se puede aplicar en caso de transmisiones multimedia. Posteriores mejoras realizadas por el autor sobre el esquema propuesto han permitido también reducir los requisitos de señalización así como combinar de forma óptima usuarios de alta y baja movilidad. Por otro lado, en caso de enlaces con múltiples antenas en transmisión y recepción, se presenta un nuevo esquema de adaptación en el cual se combina la selección de la(s) antena(s) transmisora(s) con la selección del esquema de codificación espacio-(frecuencia-) tiempo. Para finalizar, se dan una serie de recomendaciones con el objetivo de combinar ambas líneas de investigación, así como un estado del arte de las técnicas propuestas por otros autores que combinan en parte la gestión de los recursos radio y los esquemas de transmisión con múltiples antenas.In Broadband Wireless Access systems the efficient use of the resources is crucial from many points of views. From the operator point of view, the bandwidth is a scarce, valuable, and expensive resource which must be exploited in an efficient manner while the Quality of Service (QoS) provided to the users is guaranteed. On the other hand, a tight delay and link quality constraints are imposed on each data flow hence the user experiences the same quality as in fixed networks. During the last few years many techniques have been developed in order to increase the spectral efficiency and the throughput. Among them, the use of multiple antennas at the transmitter and the receiver (exploiting spatial multiplexing) with the joint optimization of the medium access control layer and the physical layer parameters.In this Ph.D. thesis, different adaptive techniques for B3G multicarrier wireless systems are developed and proposed focusing on the SS-MC-MA and the OFDM(A) (IEEE 802.16a/e/m standards) communication schemes. The research lines emphasize into the adaptation of the transmission having (Partial) knowledge of the Channel State Information for both; single antenna and multiple antenna links. For single antenna links, the implementation of a joint resource allocation and scheduling strategy by including adaptive modulation and coding is investigated. A low complexity resource allocation and scheduling algorithm is proposed with the objective to cope with real- and/or non-real- time requirements and constraints. A special attention is also devoted in reducing the required signalling. However, for multiple antenna links, the performance of a proposed adaptive transmit antenna selection scheme jointly with space-time block coding selection is investigated and compared with conventional structures. In this research line, mainly two optimizations criteria are proposed for spatial link adaptation, one based on the minimum error rate for fixed throughput, and the second focused on the maximisation of the rate for fixed error rate. Finally, some indications are given on how to include the spatial adaptation into the investigated and proposed resource allocation and scheduling process developed for single antenna transmission

    Adaptive Communication for Wireless Massive MIMO Systems

    Get PDF
    The demand for high data rates in wireless communications is increasing rapidly. One way to provide reliable communication with increased rates is massive multiple-input multiple-output (MIMO) systems where a large number of antennas is deployed. We analyze three systems utilizing a large number of antennas to provide enhancement in the performance of wireless communications. First, we consider a general form of spatial modulation (SM) systems where the number of transmitted data streams is allowed to vary and we refer to it as generalized spatial modulation with multiplexing (GSMM). A Gaussian mixture model (GMM) is shown to accurately model the transmitted spatially modulated signal using a precoding framework. Using this transmit model, a general closed-form expression for the achievable rate when operating over Rayleigh fading channels is evaluated along with a tight upper and a lower bounds for the achievable rate. The obtained expressions are flexible enough to accommodate any form of SM by adjusting the precoding set. Followed by that, we study quantized distributed wireless relay networks where a relay consisting of many geographically dispersed nodes is facilitating communication between unconnected users. Due to bandwidth constraints, distributed relay networks perform quantization at the relay nodes, and hence they are referred to as quantized distributed relay networks. In such systems, users transmit their data simultaneously to the relay nodes through the uplink channel that quantize their observed signals independently to a few bits and broadcast these bits to the users through the downlink channel. We develop algorithms that can be employed by the users to estimate the uplink channels between all users and all relay nodes when the relay nodes are performing simple sign quantization. This setup is very useful in either extending coverage to unconnected regions or replacing the existing wireless infrastructure in case of disasters. Using the uplink channel estimates, we propose multiple decoders that can be deployed at the receiver side. We also study the performance of each of these decoders under different system assumptions. A different quantization framework is also proposed for quantized distributed relay networking where the relay nodes perform vector quantization instead of sign quantization. Applying vector quantization at the relay nodes enables us to propose an algorithm that allocates quantization resources efficiently among the relay nodes inside the relay network. We also study the beamforming design at the users’ side in this case where beamforming design is not trivial due to the quantization that occurs at the relay network. Finally, we study a different setup of distributed communication systems called cell-free massive MIMO. In cell-free massive MIMO, regular cellular communication is replaced by multiple access points (APs) that are placed randomly over the coverage area. All users in the coverage area are sharing time and frequency resources and all APs are serving all UEs while power allocation is done in a central processor that is connected to the APs through a high speed backhaul network. We study the power allocation in cell-free massive MIMO system where APs are equipped with few antennas and how the distribution of the available antennas among access points affects both the performance and the infrastructure cost

    Geringer RF-Komplexität Massive MIMO Systemen: Antennenselektion und Hybrid Analog-Digital Strahlformung

    Get PDF
    Wireless data traffic has been increased dramatically in the last decades, and will continue to increase in the future. As a consequence, the infrastructure of wireless communication systems needs to advance on the data capacity. Massive Multiple-Input Multiple-Output (MIMO) is a promising candidate technology to meet the demand. By scaling up the conventional MIMO by orders of magnitude number of \emph{active} antennas, a massive MIMO system can harvest considerable channel degrees of freedom to increase the spectral efficiency. However, increasing the number of \emph{active} antennas needs to increase both the numbers of Radio Frequency (RF) transceivers and antenna elements \emph{at the same rate}, which will increase the RF complexity and cost dramatically. It is known that the complexity and cost of antenna elements are usually much lower than that of RF transceivers, which motivates us to scale up MIMO by a lower increasing rate of the number of RF transceivers than that of antenna elements, resulting in so-called low RF-complexity massive MIMO systems. In this thesis, we study two types of low RF-complexity massive MIMO systems, i.e., massive MIMO antenna selection systems and massive MIMO hybrid analog-digital beamforming systems. Both systems use specific RF networks to bridge a massive number of antennas and a small number of RF transceivers, leading to signal dimension reduction from antennas to RF transceivers. The RF network used in antenna selection is referred to as RF switching network; while the RF network used in hybrid beamforming is referred to as Phase Shifting Network (PSN). Both RF networks have two types of architectures, i.e., full-array architecture and sub-array architecture. The latter has lower insertion loss, lower complexity and better scalability than the former, but at the price of performance degradation caused by connection constraint, which will be studied for both low RF-complexity systems in this thesis. In addition, a low RF-complexity PSN for the hybrid analog-digital beamforming system needs also to be studied to replace the conventional high-complexity-and-cost phase-shifter-based PSN. In the antenna selection system, the upper bounds on the channel capacity using asymptotic theory on order statistics are derived at the large-scale limit. The optimal antenna selection algorithms are also developed, which are based on Branch And Bound (BAB) search algorithm. Through the theoretical and algorithm studies, it is found that the sub-array antenna selection has close performance to the full-array antenna selection. In the hybrid beamforming system, we propose to use Rotman lens as PSN, which is of lower complexity and cost than the conventional phase-shifter-based PSN. Two beam selection algorithms, i.e., sub-optimal greedy search and optimal BAB search, are also proposed. In addition, the Rotman lenses are designed, fabricated and measured. The measurement results together with the beam selection algorithms are used to perform Monte Carlo simulation. Simulation results show that the proposed Rotman-lens-based system with the sub-array architecture suffers noticeable performance degradation compared to the system with the full-array architecture when ideal Rotman lenses are used. But when practical non-ideal Rotman lens are used, the former outperforms the latter when the number of antennas is large enough. Most interestingly, with non-ideal hardware, the sub-array Rotman-lens-based system has close performance to the sub-array phase-shifter-based system, and also exhibits a wideband capability. To prove the advantage of the low RF-complexity massive MIMO, two testbeds are built up for the antenna selection and hybrid beamforming systems, respectively. The measurement results show the low RF-complexity massive MIMO systems have superior performance over the small-scale MIMO systems under the condition of the same number of RF transceivers. The results in this thesis show that the low RF-complexity massive MIMO systems proposed in this thesis are feasible in technology and promising in performance, validating its potential usage for the future 5G wireless communication systems.Der drahtlose Datenverkehr ist in den letzten Jahrzehnten dramatisch gestiegen und wird auch in Zukunft weiter zunehmen. Infolgedessen muss die Datenkapazität der drahtlosen Infrastruktur erhöht werden. Mehrantennen Systeme mit einer sehr großen Anzahl an Antennen (engl. Massive Multiple-Input Multiple-Output (MIMO)) sind vielversprechende Technologiekandidaten, um diese Nachfrage zu erfüllen. Durch die Hochskalierung der Antennenanzahl eines konventionellen MIMO um mehrere Größenordnungen kann ein Massive MIMO-System erhebliche Kanalfreiheitsgrade erlangen, um die spektrale Effizienz zu verbessern. Allerdings muss mit der Anzahl der \emph{aktiven} Antennen sowohl die Anzahl der Hochfrequenz (engl. Radio Frequency (RF)) Transceiver als auch die der Antennenelemente \emph{im gleichen Maße} vergrössert werden, was die RF-Komplexität und Kosten dramatisch erhöht. Dabei ist bekannt, dass die Komplexität und die Kosten von Antennenelementen in der Regel viel niedriger sind als die von RF-Transceivern. Dies führt uns dazu dass wir das MIMO-System um eine im Verhältnis zur Antennenzahl geringere Anzahl von RF-Transceivern erweitern wollen, den so genannten Massive MIMO-Systemen mit geringer RF-Komplexität. In dieser Arbeit untersuchen wir zwei Arten von Massive MIMO-Systemen mit geringer RF-Komplexität, nämlich Massive MIMO-Antennenselektionssysteme und Massive MIMO-Hybrid-Analog-Digital-Strahlformungssysteme. Beide Systeme verwenden spezielle RF-Netzwerke, um eine größere Anzahl von Antennen von einer kleineren Anzahl von RF-Transceivern zu versorgen, was zu einer Signalraumreduktion von den Antennen zu den RF-Transceivern führt. Das bei der Antennenselektions verwendete RF-Netzwerk wird als RF-Koppelfeld bezeichnet, während das RF-Netzwerk, das bei der Hybrid-Strahlformung verwendet wird, als Phasenverschiebungsnetzwerk (engl. Phase Shifting Network, PSN) bezeichnet wird. Beide RF-Netzwerke können als Voll-Array-Architektur oder als Sub-Array-Architektur realisiert werden. Letztere hat eine geringere Einfügedämpfung, eine geringere Komplexität und eine bessere Skalierbarkeit als die erstere, aber zum Preis der Leistungsverschlechterung, die durch eine eingeschränkung Anzahl von Antennen-Transceiver-Verbindungen verursacht wird. Die vorliegende Arbeit untersucht dies für beide Systeme mit niedriger RF-Komplexität. Darüber hinaus wird auch ein PSN mit niedriger RF-Komplexität für das Hybride-Analog-Digital- Strahlformungssystem untersucht, das das herkömmliche hochkomplexe und kostenintensive PSN ersetzen soll. Im Antennenselektionssystem werden die Obergrenzen der Kanalkapazität unter Verwendung der Asymptoten Theorie der Ordnungsstatistik im Grenzverhalten abgeleitet. Die optimalen Antennenselektions-Algorithmen, die auf dem Branch and Bound (BAB) Suchalgorithmus basieren, werden ebenfalls entwickelt. Die theoretischen und algorithmischen Untersuchungen zeigen, dass die Leistung der Sub-Array-Antennenauswahl dicht bei der der Voll-Array-Antennenselektions liegt. Im Hybrid-Strahlformungssystem schlagen wir vor, eine Rotman-Linse als PSN zu verwenden, die von geringerer Komplexität und Kosten ist als das herkömmliche auf Phasenverschiebung basierende PSN. Es werden zwei Strahlauswahlalgorithmen vorgeschlagen, eine suboptimale Greedy-Suche und eine optimale BAB-Suche. Darüber hinaus wird die Rotman-Linse entworfen, gefertigt und vermessen. Die Messergebnisse werden zusammen mit den Strahlselektionsalgorithmen zur Durchführung einer Monte-Carlo-Simulation verwendet. Simulationsergebnisse zeigen, dass das vorgeschlagene Rotman-Linsen-basierte System mit der Sub-Array-Architektur eine spürbare Leistungsverschlechterung im Vergleich zum System mit der Full-Array-Architektur erleidet, wenn ideale Rotman-Linsen verwendet werden. Aber wenn reale nicht-ideale Rotman-Linsen verwendet werden, übertrifft erstere die zweite, wenn die Anzahl der Antennen groß genug ist. Noch interessanter, mit nicht-idealer Hardware, zeigt das Sub-Array Rotman-Linsen-basierte System in etwa die gleiche Leistung wie das Sub-Array Phasenschieber-basierte System und weist auch Breitbandfähigkeiten auf. Um den Vorteil der Massive MIMO-Systeme mit geringer RF-Komplexität zu beweisen, werden zwei Testumgebungen für die Antennenauswahl- und Hybrid-Strahlformungssysteme aufgebaut. Die Messergebnisse zeigen, dass, unter der Bedingung einer gleichen Anzahl von RF-Transceivern, die Massive MIMO-Systeme mit geringer RF-Komplexität in der Leistung den normalen MIMO-Systemen überlegen sind. Die Ergebnisse meiner Arbeit zeigen, dass die von mir vorgeschlagenen Massive MIMO-Systeme mit geringer RF-Komplexität technisch machbar und vielversprechend in der Leistung sind und bestätigen damit deren potentielle Nutzung für die zukünftigen 5G-Funkkommunikationssysteme
    corecore