621 research outputs found

    Space-Time-Frequency Shift Keying for Dispersive Channels

    No full text
    Inspired by the concept of the Space-Time Shift Keying (STSK) modulation, in this paper we proposed the Space-Frequency Shift Keying (SFSK) modulation as well as the Space-Time-Frequency Shift Keying (STFSK) concept which spreads the transmit signal not only across the space and time domains, but also the frequency domain. The performance of STSK modulation is degraded by about 2 dB, when the channel changes from uncorrelated frequency-flat fading to the frequency-selective environment of the 6-tap COST207 model. By contrast, as a benefit of Frequency Shift keying, the SFSK and STFSK schemes are capable of maintaining their performance also in frequency-selective fading environments. Finally, we demonstrate that the STSK and SFSK schemes constitute special cases of the STFSK modulatio

    Chirp Slope Keying for Underwater Communications

    Get PDF
    This paper presents a novel broadband modulation method for digital underwater communications: Chirp Slope Keying (CSK). In its simplest form, the binary information modulates the slope of a linear chirp, with up-chirps representing ones and down-chirps representing zeros. Performance evaluation in the form of probability of error vs. SNR show that the system performs as expected for AWGN environments and very well for more realistic models for underwater acoustical communications, such as the Raylegih channel with Doppler, delays, phase offset, and multipath

    Chirp Slope Keying for Underwater Communications

    Get PDF
    This paper presents a novel broadband modulation method for digital underwater communications: Chirp Slope Keying (CSK). In its simplest form, the binary information modulates the slope of a linear chirp, with up-chirps representing ones and down-chirps representing zeros. Performance evaluation in the form of probability of error vs. SNR show that the system performs as expected for AWGN environments and very well for more realistic models for underwater acoustical communications, such as the Raylegih channel with Doppler, delays, phase offset, and multipath

    Performance Analysis of Coherent and Noncoherent Modulation under I/Q Imbalance

    Full text link
    In-phase/quadrature-phase Imbalance (IQI) is considered a major performance-limiting impairment in direct-conversion transceivers. Its effects become even more pronounced at higher carrier frequencies such as the millimeter-wave frequency bands being considered for 5G systems. In this paper, we quantify the effects of IQI on the performance of different modulation schemes under multipath fading channels. This is realized by developing a general framework for the symbol error rate (SER) analysis of coherent phase shift keying, noncoherent differential phase shift keying and noncoherent frequency shift keying under IQI effects. In this context, the moment generating function of the signal-to-interference-plus-noise-ratio is first derived for both single-carrier and multi-carrier systems suffering from transmitter (TX) IQI only, receiver (RX) IQI only and joint TX/RX IQI. Capitalizing on this, we derive analytic expressions for the SER of the different modulation schemes. These expressions are corroborated by comparisons with corresponding results from computer simulations and they provide insights into the dependence of IQI on the system parameters. We demonstrate that the effects of IQI differ considerably depending on the considered system as some cases of single-carrier transmission appear robust to IQI, whereas multi-carrier systems experiencing IQI at the RX require compensation in order to achieve a reliable communication link

    A Space Communications Study Final Report, Sep. 15, 1965 - Sep. 15, 1966

    Get PDF
    Reception of frequency modulated signals passed through deterministic and random time-varying channel

    A Novel Chirp Slope Keying Modulation Scheme for Underwater Communication

    Get PDF
    A digital modulation method using Chirp-Slope Keying (CSK) is developed for coherent underwater acoustic communications. Effective signal detection is a critical stage in the implementation of any communications system; we will see that CSK solves some significant challenges to reliable detection. This thesis is primarily based on analyzing the effectiveness of CSK through simulations using Matlab\u27s Simulink for underwater communications. The procedure begins with modulating a chirp\u27s slope by random binary data with a linear-down-slope chirp representing a 0, and a linear-up-slope chirp representing a 1. Each received symbol is demodulated by multiplying it with the exact linear-up-slope chirp and then integrating over a whole period (i.e., integrate and dump). This slope-detection technique reduces the need for the extensive recognition of the magnitude and/or the frequencies of the signal. Simulations demonstrate that CSK offers sturdy performance in the modeled ocean environment, even at very low signal-to-noise ratio (SNR). CSK is first tested using the fundamental communication channel, Additive White Gaussian Noise (AWGN) channel. Simulation results show excellent BER vs. SNR performance, implying CSK is a promising method. Further extensive analysis and simulations are performed to evaluate the quality of CSK in more realistic channels including Rayleigh amplitude fading channel and multipath

    Land Mobile Radio Systems - A Tutorial Exposition

    Get PDF
    An in-depth tutorial on land mobile radio system

    Principles of Transmission and Detection of Digital Signals

    Get PDF
    • …
    corecore