1,377 research outputs found

    Energy Detection of Unknown Signals over Cascaded Fading Channels

    Full text link
    Energy detection is a favorable mechanism in several applications relating to the identification of deterministic unknown signals such as in radar systems and cognitive radio communications. The present work quantifies the detrimental effects of cascaded multipath fading on energy detection and investigates the corresponding performance capability. A novel analytic solution is firstly derived for a generic integral that involves a product of the Meijer GG-function, the Marcum QQ-function and arbitrary power terms. This solution is subsequently employed in the derivation of an exact closed-form expression for the average probability of detection of unknown signals over NN*Rayleigh channels. The offered results are also extended to the case of square-law selection, which is a relatively simple and effective diversity method. It is shown that the detection performance is considerably degraded by the number of cascaded channels and that these effects can be effectively mitigated by a non-substantial increase of diversity branches.Comment: 12 page

    Communication in a Poisson Field of Interferers -- Part I: Interference Distribution and Error Probability

    Full text link
    We present a mathematical model for communication subject to both network interference and noise. We introduce a framework where the interferers are scattered according to a spatial Poisson process, and are operating asynchronously in a wireless environment subject to path loss, shadowing, and multipath fading. We consider both cases of slow and fast-varying interferer positions. The paper is comprised of two separate parts. In Part I, we determine the distribution of the aggregate network interference at the output of a linear receiver. We characterize the error performance of the link, in terms of average and outage probabilities. The proposed model is valid for any linear modulation scheme (e.g., M-ary phase shift keying or M-ary quadrature amplitude modulation), and captures all the essential physical parameters that affect network interference. Our work generalizes the conventional analysis of communication in the presence of additive white Gaussian noise and fast fading, allowing the traditional results to be extended to include the effect of network interference. In Part II of the paper, we derive the capacity of the link when subject to network interference and noise, and characterize the spectrum of the aggregate interference.Comment: To appear in IEEE Transactions on Wireless Communication

    Entropy and Energy Detection-based Spectrum Sensing over F Composite Fading Channels

    Get PDF
    In this paper, we investigate the performance of energy detection-based spectrum sensing over F composite fading channels. To this end, an analytical expression for the average detection probability is firstly derived. This expression is then extended to account for collaborative spectrum sensing, square-law selection diversity reception and noise power uncertainty. The corresponding receiver operating characteristics (ROC) are analyzed for different conditions of the average signal-to-noise ratio (SNR), noise power uncertainty, time-bandwidth product, multipath fading, shadowing, number of diversity branches and number of collaborating users. It is shown that the energy detection performance is sensitive to the severity of the multipath fading and amount of shadowing, whereby even small variations in either of these physical phenomena can significantly impact the detection probability. As a figure of merit to evaluate the detection performance, the area under the ROC curve (AUC) is derived and evaluated for different multipath fading and shadowing conditions. Closed-form expressions for the Shannon entropy and cross entropy are also formulated and assessed for different average SNR, multipath fading and shadowing conditions. Then the relationship between the Shannon entropy and ROC/AUC is examined where it is found that the average number of bits required for encoding a signal becomes small (i.e., low Shannon entropy) when the detection probability is high or when the AUC is large. The difference between composite and traditional small-scale fading is emphasized by comparing the cross entropy for Rayleigh and Nakagami-m fading. A validation of the analytical results is provided through a careful comparison with the results of some simulations.Comment: 30 pages, 11 figures, 1 table, Submitted to IEEE TCO

    Distributed Nonparametric Sequential Spectrum Sensing under Electromagnetic Interference

    Full text link
    A nonparametric distributed sequential algorithm for quick detection of spectral holes in a Cognitive Radio set up is proposed. Two or more local nodes make decisions and inform the fusion centre (FC) over a reporting Multiple Access Channel (MAC), which then makes the final decision. The local nodes use energy detection and the FC uses mean detection in the presence of fading, heavy-tailed electromagnetic interference (EMI) and outliers. The statistics of the primary signal, channel gain or the EMI is not known. Different nonparametric sequential algorithms are compared to choose appropriate algorithms to be used at the local nodes and the FC. Modification of a recently developed random walk test is selected for the local nodes for energy detection as well as at the fusion centre for mean detection. It is shown via simulations and analysis that the nonparametric distributed algorithm developed performs well in the presence of fading, EMI and is robust to outliers. The algorithm is iterative in nature making the computation and storage requirements minimal.Comment: 8 pages; 6 figures; Version 2 has the proofs for the theorems. Version 3 contains a new section on approximation analysi
    corecore