4 research outputs found

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    Point based graphics rendering with unified scalability solutions.

    Get PDF
    Standard real-time 3D graphics rendering algorithms use brute force polygon rendering, with complexity linear in the number of polygons and little regard for limiting processing to data that contributes to the image. Modern hardware can now render smaller scenes to pixel levels of detail, relaxing surface connectivity requirements. Sub-linear scalability optimizations are typically self-contained, requiring specific data structures, without shared functions and data. A new point based rendering algorithm 'Canopy' is investigated that combines multiple typically sub-linear scalability solutions, using a small core of data structures. Specifically, locale management, hierarchical view volume culling, backface culling, occlusion culling, level of detail and depth ordering are addressed. To demonstrate versatility further, shadows and collision detection are examined. Polygon models are voxelized with interpolated attributes to provide points. A scene tree is constructed, based on a BSP tree of points, with compressed attributes. The scene tree is embedded in a compressed, partitioned, procedurally based scene graph architecture that mimics conventional systems with groups, instancing, inlines and basic read on demand rendering from backing store. Hierarchical scene tree refinement constructs an image tree image space equivalent, with object space scene node points projected, forming image node equivalents. An image graph of image nodes is maintained, describing image and object space occlusion relationships, hierarchically refined with front to back ordering to a specified threshold whilst occlusion culling with occluder fusion. Visible nodes at medium levels of detail are refined further to rasterization scales. Occlusion culling defines a set of visible nodes that can support caching for temporal coherence. Occlusion culling is approximate, possibly not suiting critical applications. Qualities and performance are tested against standard rendering. Although the algorithm has a 0(f) upper bound in the scene sizef, it is shown to practically scale sub-linearly. Scenes with several hundred billion polygons conventionally, are rendered at interactive frame rates with minimal graphics hardware support
    corecore