1,534 research outputs found

    Landscape Paradigms in Physics and Biology: Introduction and Overview

    Full text link
    A brief introductory overview in general terms is given of concepts, issues and applications of the paradigm of rugged landscapes in the contexts of physics and biology.Comment: 10 pages, to be published in Physica

    Study of efficient numerical tools for machine learning

    Get PDF
    Artificial intelligence has been a field of interest in the scientific community since the 20th century, inside this field is found deep learning. This discipline of Machine learning focuses on the creation of artificial intelligence capable of reproducing human tasks by learning from raw data. In fact, the reason why deep learning has experienced a great increase in attention and scientific articles in the last decades is the settlement of the digital era, which has meant an exponential increase in stored data, and therefore has allowed algorithms to achieve exceptional results. Based on the growing need for trained professionals in this field, this final thesis is a study of the fundamentals of deep learning and machine learning that aims to serve as a bridge to more cutting-edge knowledge. The central pillar of the project are artificial neural networks applied to classification, though other general Machine Learning concepts such as gradient descent optimization methods and some regularization methods are also studied at the same time. The main objective of the project is to analyze the effectiveness of neural networks in some databases, as well as to compare the impact of implementing different features in the network. The programming of all the necessary codes from scratch without the use of support libraries has also been an important part of the project. To address these objectives, extensive research has been carried out in the field, not only on the theoretical knowledge but also on the mathematics behind it. In addition, a methodology based on object-oriented programming has been followed to create a clean, readable, and easily extendable code. The results obtained demonstrate the effectiveness of neural networks applied to the classification of both data and images. They also highlight the effectiveness of some of the above features over others. The next logical step after this project would be to further explore the use of neural networks as autoencoders, and study the impact of the implementation of the convolution operation for image classificatio

    Learning Image-Conditioned Dynamics Models for Control of Under-actuated Legged Millirobots

    Full text link
    Millirobots are a promising robotic platform for many applications due to their small size and low manufacturing costs. Legged millirobots, in particular, can provide increased mobility in complex environments and improved scaling of obstacles. However, controlling these small, highly dynamic, and underactuated legged systems is difficult. Hand-engineered controllers can sometimes control these legged millirobots, but they have difficulties with dynamic maneuvers and complex terrains. We present an approach for controlling a real-world legged millirobot that is based on learned neural network models. Using less than 17 minutes of data, our method can learn a predictive model of the robot's dynamics that can enable effective gaits to be synthesized on the fly for following user-specified waypoints on a given terrain. Furthermore, by leveraging expressive, high-capacity neural network models, our approach allows for these predictions to be directly conditioned on camera images, endowing the robot with the ability to predict how different terrains might affect its dynamics. This enables sample-efficient and effective learning for locomotion of a dynamic legged millirobot on various terrains, including gravel, turf, carpet, and styrofoam. Experiment videos can be found at https://sites.google.com/view/imageconddy

    Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Full text link
    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a `basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.Comment: submitted to Scientific Repor

    Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications

    Get PDF
    With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing. (C) 2017 Author(s).Fundacao para a Ciencia e a Tecnologia (FCT) [UID/Multi/00631/2013]European Structural and Investment Funds (FEEI) through the Competitiveness and Internationalization Operational Program - COMPETE 2020National Funds through FCT [ALG-01-0145-FEDER-016432/POCI-01-0145-FEDER-016432]European Commission under the project iBROW [645369]project COMBINA [TEC2015-65212-C3-3-PAEI/FEDER UE]Ramon y Cajal fellowshipinfo:eu-repo/semantics/publishedVersio
    • …
    corecore