1,496 research outputs found

    Intelligent OFDM telecommunication system. Part 1. Model of complex and quaternion systems

    Get PDF
    In this paper, we aim to investigate the superiority and practicability of many-parameter transforms (MPTs) from the physical layer security (PHY-LS) perspective. We propose novel Intelligent OFDM-telecommunication systems based on complex and quaternion MPTs. The new systems use inverse MPT (IMPT) for modulation at the transmitter and MPT for demodulation at the receiver. The purpose of employing the MPT is to improve: 1) the PHY-LS of wireless transmissions against to the wide-band anti-jamming and anti-eavesdropping communication; 2) the bit error rate (BER) performance with respect to the conventional OFDM-TCS; 3) the peak to average power ratio (PAPR). Each MPT depends on finite set of independent parameters (angles). When parameters are changed, many-parametric transform is also changed taking form of a set known (and unknown) orthogonal (or unitary) transforms. For this reason, the concrete values of parameters are specific "key" for entry into OFDM-TCS. Vector of parameters belong to multi-dimension torus space. Scanning of this space for find out the "key" (the concrete values of parameters) is hard problem. MPT has the form of the product of the Jacobi rotation matrixes and it describes a fast algorithm for MPT. The main advantage of using MPT in OFDM TCS is that it is a very flexible anti-eavesdropping and anti-jamming Intelligent OFDM TCS. To the best of our knowledge, this is the first work that utilizes the MPT theory to facilitate the PHY-LS through parameterization of unitary transforms. © 2019 IOP Publishing Ltd. All rights reserved

    An Investigation of Orthogonal Wavelet Division Multiplexing Techniques as an Alternative to Orthogonal Frequency Division Multiplex Transmissions and Comparison of Wavelet Families and Their Children

    Get PDF
    Recently, issues surrounding wireless communications have risen to prominence because of the increase in the popularity of wireless applications. Bandwidth problems, and the difficulty of modulating signals across carriers, represent significant challenges. Every modulation scheme used to date has had limitations, and the use of the Discrete Fourier Transform in OFDM (Orthogonal Frequency Division Multiplex) is no exception. The restriction on further development of OFDM lies primarily within the type of transform it uses in the heart of its system, Fourier transform. OFDM suffers from sensitivity to Peak to Average Power Ratio, carrier frequency offset and wasting some bandwidth to guard successive OFDM symbols. The discovery of the wavelet transform has opened up a number of potential applications from image compression to watermarking and encryption. Very recently, work has been done to investigate the potential of using wavelet transforms within the communication space. This research will further investigate a recently proposed, innovative, modulation technique, Orthogonal Wavelet Division Multiplex, which utilises the wavelet transform opening a new avenue for an alternative modulation scheme with some interesting potential characteristics. Wavelet transform has many families and each of those families has children which each differ in filter length. This research consider comprehensively investigates the new modulation scheme, and proposes multi-level dynamic sub-banding as a tool to adapt variable signal bandwidths. Furthermore, all compactly supported wavelet families and their associated children of those families are investigated and evaluated against each other and compared with OFDM. The linear computational complexity of wavelet transform is less than the logarithmic complexity of Fourier in OFDM. The more important complexity is the operational complexity which is cost effectiveness, such as the time response of the system, the memory consumption and the number of iterative operations required for data processing. Those complexities are investigated for all available compactly supported wavelet families and their children and compared with OFDM. The evaluation reveals which wavelet families perform more effectively than OFDM, and for each wavelet family identifies which family children perform the best. Based on these results, it is concluded that the wavelet modulation scheme has some interesting advantages over OFDM, such as lower complexity and bandwidth conservation of up to 25%, due to the elimination of guard intervals and dynamic bandwidth allocation, which result in better cost effectiveness

    Performance investigation of WOFDM for 5G wireless networks

    Get PDF
    Nowadays, emerging wireless networks scenarios such as the proposed systems for 5G is discussed widely with diverse requirements. Orthogonal Frequency Division Multiplexing (OFDM) is a conservative proposal which is used to build 5G WOFDM system (Wavelet OFDM system). The simulation of the system is initialized with BPSK then with QAM and 64-QAM the system is improved by increasing the number of levels of Discrete Wavelet Transform to five levels and finally compared with original system to prove that the it is convenient for 5G Wireless networks

    Filter Bank Multicarrier for Massive MIMO

    Full text link
    This paper introduces filter bank multicarrier (FBMC) as a potential candidate in the application of massive MIMO communication. It also points out the advantages of FBMC over OFDM (orthogonal frequency division multiplexing) in the application of massive MIMO. The absence of cyclic prefix in FBMC increases the bandwidth efficiency. In addition, FBMC allows carrier aggregation straightforwardly. Self-equalization, a property of FBMC in massive MIMO that is introduced in this paper, has the impact of reducing (i) complexity; (ii) sensitivity to carrier frequency offset (CFO); (iii) peak-to-average power ratio (PAPR); (iv) system latency; and (v) increasing bandwidth efficiency. The numerical results that corroborate these claims are presented.Comment: 7 pages, 6 figure
    corecore