602 research outputs found

    Automatically Recognizing Medication and Adverse Event Information From Food and Drug Administration\u27s Adverse Event Reporting System Narratives

    Get PDF
    BACKGROUND: The Food and Drug Administration\u27s (FDA) Adverse Event Reporting System (FAERS) is a repository of spontaneously-reported adverse drug events (ADEs) for FDA-approved prescription drugs. FAERS reports include both structured reports and unstructured narratives. The narratives often include essential information for evaluation of the severity, causality, and description of ADEs that are not present in the structured data. The timely identification of unknown toxicities of prescription drugs is an important, unsolved problem. OBJECTIVE: The objective of this study was to develop an annotated corpus of FAERS narratives and biomedical named entity tagger to automatically identify ADE related information in the FAERS narratives. METHODS: We developed an annotation guideline and annotate medication information and adverse event related entities on 122 FAERS narratives comprising approximately 23,000 word tokens. A named entity tagger using supervised machine learning approaches was built for detecting medication information and adverse event entities using various categories of features. RESULTS: The annotated corpus had an agreement of over .9 Cohen\u27s kappa for medication and adverse event entities. The best performing tagger achieves an overall performance of 0.73 F1 score for detection of medication, adverse event and other named entities. C ONCLUSIONS: In this study, we developed an annotated corpus of FAERS narratives and machine learning based models for automatically extracting medication and adverse event information from the FAERS narratives. Our study is an important step towards enriching the FAERS data for postmarketing pharmacovigilance

    Adverse Drug Event Detection, Causality Inference, Patient Communication and Translational Research

    Get PDF
    Adverse drug events (ADEs) are injuries resulting from a medical intervention related to a drug. ADEs are responsible for nearly 20% of all the adverse events that occur in hospitalized patients. ADEs have been shown to increase the cost of health care and the length of stays in hospital. Therefore, detecting and preventing ADEs for pharmacovigilance is an important task that can improve the quality of health care and reduce the cost in a hospital setting. In this dissertation, we focus on the development of ADEtector, a system that identifies ADEs and medication information from electronic medical records and the FDA Adverse Event Reporting System reports. The ADEtector system employs novel natural language processing approaches for ADE detection and provides a user interface to display ADE information. The ADEtector employs machine learning techniques to automatically processes the narrative text and identify the adverse event (AE) and medication entities that appear in that narrative text. The system will analyze the entities recognized to infer the causal relation that exists between AEs and medications by automating the elements of Naranjo score using knowledge and rule based approaches. The Naranjo Adverse Drug Reaction Probability Scale is a validated tool for finding the causality of a drug induced adverse event or ADE. The scale calculates the likelihood of an adverse event related to drugs based on a list of weighted questions. The ADEtector also presents the user with evidence for ADEs by extracting figures that contain ADE related information from biomedical literature. A brief summary is generated for each of the figures that are extracted to help users better comprehend the figure. This will further enhance the user experience in understanding the ADE information better. The ADEtector also helps patients better understand the narrative text by recognizing complex medical jargon and abbreviations that appear in the text and providing definitions and explanations for them from external knowledge resources. This system could help clinicians and researchers in discovering novel ADEs and drug relations and also hypothesize new research questions within the ADE domain

    Linguistic and statistically derived features for cause of death prediction from verbal autopsy text

    Get PDF
    Automatic Text Classification (ATC) is an emerging technology with economic importance given the unprecedented growth of text data. This paper reports on work in progress to develop methods for predicting Cause of Death from Verbal Autopsy (VA) documents recommended for use in low-income countries by the World Health Organisation. VA documents contain both coded data and open narrative. The task is formulated as a Text Classification problem and explores various combinations of linguistic and statistical approaches to determine how these may improve on the standard bag-of-words approach using a dataset of over 6400 VA documents that were manually annotated with cause of death. We demonstrate that a significant improvement of prediction accuracy can be obtained through a novel combination of statistical and linguistic features derived from the VA text. The paper explores the methods by which ATC may leads to improved accuracy in Cause of Death prediction
    • …
    corecore