12 research outputs found

    Quantifying the Performance of a Hybrid Pixel Detector with GaAs:Cr Sensor for Transmission Electron Microscopy

    Get PDF
    Hybrid pixel detectors (HPDs) have been shown to be highly effective for diffraction-based and time-resolved studies in transmission electron microscopy, but their performance is limited by the fact that high-energy electrons scatter over long distances in their thick Si sensors. An advantage of HPDs compared to monolithic active pixel sensors (MAPS) is that their sensor does not need to be fabricated from Si. We have compared the performance of the Medipix3 HPD with a Si sensor and with a GaAs:Cr sensor using primary electrons in the energy range of 60 - 300keV. We describe the measurement and calculation of the detectors' modulation transfer function (MTF) and detective quantum efficiency (DQE), which show that the performance of the GaAs:Cr device is markedly superior to that of the Si device for high-energy electrons.Comment: 15 pages + references, 13 figure

    Characterization of the radiation field in ATLAS using Timepix detectors

    Full text link
    Le travail présenté dans cette thèse porte sur le réseau de détecteurs à pixels ATLAS-TPX, installé dans l’expérience ATLAS afin d’étudier l’environement radiatif en utilisant la tech- nologie Timepix. Les travaux sont rapportés en deux parties, d’une part l’analyse des données recueillies entre 2015 et 2018, d’autre part l’étude de nouveaux détecteurs pour une mise à niveau du réseau. Dans la première partie, une méthode pour extraire certaines propriétés des MIPs (Mini- mum Ionizing Particles) est développée, basée sur l’étude des traces laissées par ces particules lorsqu’elles traversent les matrices de pixels des détecteurs ATLAS-TPX. Il est montré que la direction des MIPs et leur perte d’énergie (dE/dX) peut être déterminée, permettant d’évaluer leur origine. De plus, la méthode pour mesurer les champs de neutrons thermiques et neutrons rapides avec ces détecteurs est expliquée, puis appliquée aux données. Les flux de neutrons thermiques mesurés aux différentes positions des détecteurs ATLAS-TPX sont présentés, alors que le signal des neutrons rapides ne se distingue pas du bruit de fond. Ces résultats sont décrits dans une publication, et la façon dont ils peuvent être utilisés pour valider les simulations de champs de radiation dans ATLAS est discutée. Dans la seconde partie, la thèse présente une étude de détecteurs Timepix utilisant l’arséniure de gallium (GaAs) et le tellurure de cadmium (CdTe) comme capteur de radia- tion. Ces semiconducteurs offrent des avantages par rapport au silicium et pourraient être utilisés dans les prochaines mises à niveau du réseau ATLAS-TPX. Comme ils sont connus pour des problèmes d’instabilité dans le temps et une efficacité de collection de charge incomplète, ils sont testés en utilisant divers types d’irradiation. Ceci est décrit dans deux articles, l’un portant sur un capteur au GaAs de 500 μm d’épaisseur, l’autre sur un capteur au CdTe de 1 mm d’épaisseur. Malgré l’apparition de pixels bruyants lors des mesures, les détecteurs montrent une bonne stabilité du signal dans le temps. Par contre, l’efficacité de iv collection de charge est inhomogène à travers la surface des détecteurs, avec des fluctuations de produits mobilité-temps de vie (μτ) importantes. Ces résultats montrent qu’il est nécessaire d’étudier l’influence de ces défauts sur les algorithmes de reconnaissance de traces avant l’utilisation du GaAs et CdTe dans les mises à niveau du réseau ATLAS-TPX.The work presented in this thesis focuses on the ATLAS-TPX pixel detector network, in- stalled in the ATLAS experiment for studying the radiation environement using the Timepix technology. The achievements are presented in two parts, on one hand the analysis of data acquired between 2015 and 2018, on another hand the study of new detectors for an upgrade of the network. In the first part, a method to extract properties of MIPs (Minimum Ionizing Particles) is developed, based on the analysis of clusters left by the interaction of these particles in the pixel matrixes of the ATLAS-TPX detectors. It is shown that the direction of MIPs and their energy loss (dE/dX) can be determined, allowing the evaluation of their origin. Moreover, the method for mesuring the thermal and fast neutron fields is explained, and applied to the data. The thermal neutron fluxes at the different detector locations are reported, whereas the fast neutron signal cannot be distingished from the background. Thoses results are described in a publication, and their use for benchmarking simulations of the radiation field in ATLAS is discussed. In the second part, the thesis presents a study of Timepix detectors equipped with gallium arsenide (GaAs) and cadmium telluride (CdTe) sensors. These semiconductors offer some advantages over silicon and could be used for upgrades of the ATLAS- TPX network. Since they are known to suffer from time instabilities and incomplete charge collection efficiency, they are tested using several types of irradiation. This is described in two publications, one focusing on a 500μm thick GaAs sensor, another focusing on a 1mm thick CdTe sensor. Despite the appearance of noisy pixels during the measurements, the detectors are found to be reasonably stable in time. However, the charge collection efficiency is found to be inhomogeneous across the sensor surfaces, with significant fluctuations of mobility-lifetime (μτ) products. These results show that vi it is necessary to study the influence of these material defects on the pattern recog- nition algorithms before the integration of such sensors in the ATLAS-TPX upgrades

    Дослідження впливу умов електрохімічного травлення на морфологію поруватого арсеніду галію

    Get PDF
    The method for the formation of porous gallium arsenide in a solution of hydrochloric acid was improved. The goal of present research was to establish correlation between conditions of electrochemical etching of gallium arsenide crystals and morphology of low-dimensional structures. Porous layers were formed by the method of electrochemical etching in a solution of hydrochloric acid. The mode of electrolyte agitation was applied. This makes it possible to avoid the formation of bubbles on the surface of the crystal during etching and leads to the formation of regular porous space. Basic regularities in the formation of porous spaces were studied. It was shown that morphological properties of por-GaAs depend on etching conditions.The effect was explored of current density on the thickness of a porous layer and diameter of pores. It was established that the composition and concentration of electrolyte correlate with surface porosity and affect the rate of crystal dissolution reaction. Etching time determines thickness of a porous layer and surface porosity. Chemical composition of por-GaAs was explored. An oxide layer was not formed on the surface of the examined samples; oxygen was present only in small concentrations. Stoichiometry of the samples was disrupted towards an excess of gallium atomsУсовершенствован способ формирования пористого арсенида галлия в растворе соляной кислоты. Исследованы основные закономерности формирования пористых пространств. Показано, что морфологические свойства por-GaAs зависят от условий травления. Исследовано влияние плотности тока, времени травления и состава электролита на поверхностную пористость, толщину пористого слоя и диаметр порПроведено удосконалення способу формування поруватого арсеніду галію у розчині соляної кислоти. Досліджено основні закономірності формування поруватих просторів. Показано, що морфологічні властивості por-GaAs залежать від умов травлення. Досліджено вплив щільності струму, часу травлення та складу електроліту на поверхневу поруватість, товщину поруватого шару та діаметр по

    Studies of hybrid pixel detectors for use in Transmission Electron Microscopy

    Get PDF
    Hybrid pixel detectors (HPDs) are a class of direct electron detectors that have been adopted for use in a wide variety of experimental modalities across all branches of electron microscopy. Nevertheless, this does not preclude the possibility of further improvement and optimisation of their performance for specific applications and increasing the range of experiments for which they are suitable. The aims of this thesis are two-fold. Firstly, to develop a more comprehensive understanding of the current generation HPDs using Si sensors, with a view to optimising their design. Secondly, to determine the advantages of alternative sensor materials that, in principle, should improve the performance of HPDs in transmission electron microscopy (TEM) due to their increased stopping power. The three chapters review the relevant theoretical background. This includes the physics underpinning the performance of semiconductor-based sensors in electron microscopy as well as the operation of detectors more generally and the theory underlying the metrics used to evaluate detector performance in Chapter 1. In Chapter 2, TEM as a key tool in the study of nano- and atomic scale systems is also introduced, along with an overview of the detector technologies used in TEM. Also presented as part of the background material in Chapter 3 is a description of the experimental methods and software packages used to acquire the results presented in the latter half of the thesis. Chapter 4, the first results chapter, presents a comparison of the performance of Medipix3 detectors with Si sensors with various combination of pixel pitch and sensor thickness for 60 keV and 200 keV electrons. In Chapter 5, simulations of the interactions of electrons with energies ranging from 30-300 keV with GaAs:Cr and CdTe/CZT, two of the most viable alternatives to Si for use in the sensors of HPDs, are compared with simulations of the interactions of electrons with Si. A comparative study of the performance of a Medipix3 device with GaAs:Cr sensor with that of a Si sensor of the same thickness and pixel pitch for electrons with energies ranging from 60-300 keV is presented in Chapter 6. Also included in this Chapter are the results of investigations into the defects present in the CaAs:Cr sensor material and how these affect device performance. These consist of confocal scanning transmission electron microscopy scans used to estimate the size and shape of individual pixels and how these relate to the linearity of pixels’ response, as well as studies of how the efficacy of a standard flat field depends on the incident electron flux. In the final results chapter, the focus shifts to preliminary measurements of the response of an integrating detector with GaAs:Cr sensor to electrons. These initial experimental measurements prompted further simulations investigating how the backside contact of GaAs:Cr sensors can be improved when using electrons

    Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor

    No full text
    High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 μm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications

    Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor

    No full text
    High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 μm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications

    Novel detectors and algorithms for electron nano-crystallography

    Get PDF
    In the past decade, advances in structure determination with electron microscopy of organic, beam sensitive, materials have been significant. The newly developed techniques, triggered by new microscope systems and new cameras, made it possible to acquire 3D structural information from these samples to a resolution which was impossible to achieve before. Knowledge is required to improve structure solution and every aspect of the process involved, from treatment of radiation sensitive materials, sample preparation, TEM imaging and diffraction systems all the way to how data must be interpreted. In this thesis I explained multiple new techniques and methods developed by us, using both new microscopes as well as a new type of detector: Timepix. I describe how these tools can help to overcome (what were) the most important problems and bottlenecks in detection of very low dose electron diffraction.UBL - phd migration 201
    corecore