10 research outputs found

    A novel MLSD receiver architecture for nonlinear channels

    Get PDF
    A new architecture for maximum likelihood sequence detec- tion (MLSD) in nonlinear dispersive channels (NLCs) is presented, and its robustness to inaccurate channel knowledge is analyzed. This architecture is developed by considering a novel orthogonal representation of the NLC, which is exploited to develop a front-end capable of obtaining uncorrelated symbol rate samples, representing a sufficient statistic for information decoding. This front-end is a special form of space-time whitened matched filter (ST-WMF), and the MLSD obtained by using this front-end (ST-WMF-MLSD) requires simple branch metrics due to the signal whitening. The ST-WMF also allows for space-time compression of the equivalent channel, which is exploited for further complexity reduction of the ST-WMF-MLSD. Simulation results show the good trade-off in performance and complexity obtained with the ST-WMF- MLSD, even in the presence of inaccurate channel knowledge.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    A novel MLSD receiver architecture for nonlinear channels

    Get PDF
    A new architecture for maximum likelihood sequence detec- tion (MLSD) in nonlinear dispersive channels (NLCs) is presented, and its robustness to inaccurate channel knowledge is analyzed. This architecture is developed by considering a novel orthogonal representation of the NLC, which is exploited to develop a front-end capable of obtaining uncorrelated symbol rate samples, representing a sufficient statistic for information decoding. This front-end is a special form of space-time whitened matched filter (ST-WMF), and the MLSD obtained by using this front-end (ST-WMF-MLSD) requires simple branch metrics due to the signal whitening. The ST-WMF also allows for space-time compression of the equivalent channel, which is exploited for further complexity reduction of the ST-WMF-MLSD. Simulation results show the good trade-off in performance and complexity obtained with the ST-WMF- MLSD, even in the presence of inaccurate channel knowledge.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    On linear MMSE based turbo-equalization of nonlinear Volterra channels

    Get PDF
    International audienceThis article deals with Minimum Mean Square Error (MMSE) turbo equalization of nonlinear interference using a volterra series decomposition of the underlying nonlinear channel. Although it has been often argued that linear MMSE based equalization is unsuited for cancelling nonlinear interference, we show that this common belief is not true in a strict sense. By a proper derivation of the linear based MMSE soft equalizer, we are able to show that the underlying structure of the equalizer is equivalent to a Soft Interference Canceller (SIC) treating both the linear and nonlinear interference. Based on these results, approximations are provided for lowering the computational complexity. Links to previously proposed “nonlinear” SIC are emphasized showing that the previously proposed structures are nothing but approximations of a linear MMSE receiver applied to nonlinear ISI channels. Simulations show that significant improvements can be achieved by using the proposed exact and approximate MMSE based turbo-equalizers

    Performance Analysis of Fractionally Spaced Equalization in Non-linear Multicarrier Satellite Channels

    Get PDF
    Joint amplification of multiple carriers with a single wideband high power amplifier (HPA) has been considered towards reusing the satellite resources among multiple links to reduce the mission cost. The non-linear characteristic of the HPA, especially near saturation, coupled with the on-board IMUX/ OMUX filters result in non-linear adjacent carrier interference (ACI) and inter-symbol interference (ISI) during multicarrier power amplification. To benefit from the advantages of multicarrier transmissions, on-ground techniques to mitigate the non-linear distortions need to be devised. These techniques include predistortion at the transmitter and equalization at the receiver. Several works have considered the use of multicarrier predistortion along with single carrier equalization. A symbol synchronous equalizer, while being simple to implement, may not necessarily provide for the optimum linear filter. Towards improving the performance, fractionally spaced equalizers (FSE) have been considered. Such receivers are shown to provide enhanced performance by effectively compensating for the group delay distortions. The objective of this work is to consider the use of FSE in the context of multicarrier transmissions over non-linear channels and illustrate their performance enhancement

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined
    corecore