245 research outputs found

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of people’s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairments’ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the user’s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmitters’ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receivers’ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the users’ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    A guide to wireless networking by light

    Get PDF
    The lack of wireless spectrum in the radio frequency bands has led to a rapid growth in research in wireless networking using light, known as LiFi (light fidelity). In this paper an overview of the subsystems, challenges and techniques required to achieve this is presented

    Sistemas de comunicação por luz visível na segurança rodoviária

    Get PDF
    Doutoramento em MAP-TeleEsta tese apresenta um estudo exploratório sobre sistemas de comunicação por luz visível e as suas aplicações em sistemas de transporte inteligentes como forma a melhorar a segurança nas estradas. Foram desenvolvidos neste trabalho, modelos conceptuais e analíticos adequados à caracterização deste tipo de sistemas. Foi desenvolvido um protótipo de baixo custo, capaz de suportar a disseminação de informação utilizando semáforos. A sua realização carece de um estudo detalhado, nomeadamente: i) foi necessário obter modelos capazes de descrever os padrões de radiação numa área de serviço pré-definida; ii) foi necessário caracterizar o meio de comunicações; iii) foi necessário estudar o comportamento de vários esquemas de modulação de forma a optar pelo mais robusto; finalmente, iv) obter a implementação do sistema baseado em FPGA e componentes discretos. O protótipo implementado foi testado em condições reais. Os resultados alcançados mostram os méritos desta solução, chegando mesmo a encorajar a utilização desta tecnologia em outros cenários de aplicação.This thesis presents a study carried out on the exploration of visible light communication (VLC) for road safety applications in intelligent transportation systems (ITS). We developed conceptual and analytical models for the usage of VLC technologies for human safety. A low cost VLC prototype traffic broadcast system was hardware designed and implemented. In order to realize this prototype a number of exhaustive steps have been designed and implemented. An optimized illumination distribution was achieved in a defined service area from LED-based traffic lights associated with a VLC emitter. A traffic light system set-up was modeled and designed for optimum performance. The optical wireless channel was characterized and examined. Depending on the characteristics of the channel and specific applications, a robust modulation technique based on direct sequence spread spectrum using sequence inverse keying (DSSS SIK) was analyzed, developed, and implemented. The complete prototype VLC transceiver system was then implemented with field programmable gate arrays (FPGA) and discrete components. Simulation and experimental validation of system was performed in different scenarios and environments. The obtained results have shown the merits of our approach. A number of findings was experienced which are illustrated at the end. These observations would enhance and encourage potential research in the area and optimize performance of VLC systems for a number of interesting applications in future. A summary of future research challenges is presented at the end

    Civil maritime GNSS combinations in arctic areas

    Get PDF
    Project thesis submitted to the University of Nottingham in partial fulfilment of the degree of Master of Science in Positioning and Navigational TechnologyGPS is the most used GNSS system on board civilian vessels using civil GPS signal L1 only. Since 2011, there have been two fully operational GNSS systems – GPS since 1995 and GLONASS since 2011. Both GPS and GLONASS conduct modernization programs involving new satellites, new signals and new ground segment stations. New GNSS equipment is needed to exploit the new signals and both GNSS systems in a combined positioning approach. Future GNSS systems are Galileo and BeiDou. The Northeast Passage (NEP) is the shipping route between Europe and Asia passing Norwegian and Russian territory. The NEP is about 40% shorter than the voyage through Suez channel. The reduction of sea ice in the arctic area around Svalbard and NEP has increased the use of NEP for civilian vessels. The cold and harsh environment in NEP demands robust and reliable navigation equipment for solving position solutions. The distinctiveness of the Arctic is the latitude. It is higher than the inclination angle to Equator of the GNSS satellites orbital planes and the arctic area has ionospheric irregularities due to Aurora Borealis. In the thesis, a GNSS measurement was conducted at Svalbard on 16 to 18 June 2015. The aim of the research is to compare the GNSS combinations positioning approach: GPS Single, GLONASS, GPS Dual, GPS+GLONASS combined and DGPS. The RTKLIB version 2.4.3, an open source GNSS processing software program was used to evaluate the solutions of the GNSS combinations by post-processing the data collected at Svalbard. The research compared the GNSS combinations in a long and short static test, in a dynamic ship moving simulation and during sun activity. The GPS+GLONASS combination has shown to be more robust in accuracy, precision, availability of all GNSS satellites and their signals during the static and dynamic test in the Arctic. Due to redundancy and robustness, it is advantageous to use the GPS+GLONASS combination for safe navigation in the arctic area around Svalbard and in the Northeast Passage for civilian vessels

    GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes

    Get PDF
    We report on the electrical-to-optical modulation bandwidths of non-mesa-etched semipolar (112¯2) InGaN/GaN light-emitting diodes (LEDs) operating at 430–450 nm grown on high-quality (112¯2) GaN templates, which were prepared on patterned (101¯2) \u1d45f-plane sapphire substrates. The measured frequency response at −3 dB of the LEDs was up to 1 GHz. A high back-to-back data transmission rate of above 2.4 Gbps is demonstrated using a non-return-to-zero on-off keying modulation scheme. This indicates that (112¯2) LEDs are suitable gigabit per second data transmission for use in visible-light communication applications

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC
    corecore