183 research outputs found

    Medium Access Control for Wireless Sensor Networks based on Impulse Radio Ultra Wideband

    Full text link
    This paper describes a detailed performance evaluation of distributed Medium Access Control (MAC) protocols for Wireless Sensor Networks based on Impulse Radio Ultra Wideband (IR-UWB) Physical layer (PHY). Two main classes of Medium Access Control protocol have been considered: Slotted and UnSlotted with reliability. The reliability is based on Automatic Repeat ReQuest (ARQ). The performance evaluation is performed using a complete Wireless Sensor Networks (WSN) simulator built on the Global Mobile Information System Simulator (GloMoSim). The optimal operating parameters are first discussed for IR-UWB in terms of slot size, retransmission delay and the number of retransmission, then a comparison between IR-UWB and other transmission techniques in terms of reliability latency and power efficiency

    Sloppy-slotted ALOHA

    Get PDF
    Random access signaling, which allows slotted packets to spill over into adjacent slots, is investigated. It is shown that sloppy-slotted ALOHA can always provide higher throughput than conventional slotted ALOHA. The degree of improvement depends on the timing error distribution. Throughput performance is presented for Gaussian timing error distributions, modified to include timing error corrections. A general channel capacity lower bound, independent of the specific timing error distribution, is also presented

    Interference Calculation in Asynchronous Random Access Protocols using Diversity

    Full text link
    The use of Aloha-based Random Access protocols is interesting when channel sensing is either not possible or not convenient and the traffic from terminals is unpredictable and sporadic. In this paper an analytic model for packet interference calculation in asynchronous Random Access protocols using diversity is presented. The aim is to provide a tool that avoids time-consuming simulations to evaluate packet loss and throughput in case decodability is still possible when a certain interference threshold is not exceeded. Moreover the same model represents the groundbase for further studies in which iterative Interference Cancellation is applied to received frames.Comment: This paper has been accepted for publication in the Springer's Telecommunication Systems journal. The final publication will be made available at Springer. Please refer to that version when citing this paper; Springer Telecommunication Systems, 201

    Space-time characteristics of ALOHA protocols in high speed birdirectional bus networks

    Get PDF
    Caption title.Includes bibliographical references (p. 27-28).Supported by the Defense Advanced Research Projects Agency. N00014-84-K-0357 Supported by the National Science Foundation. NSF-ECS-8310698 Supported by the Army Research Office. ARO-DAAL03-92-G-0115by Whay Chiou Lee and Pierre A. Humblet

    Unslotted ALOHA in high speed bidirectional bus networks

    Get PDF
    Caption title.Includes bibliographical references (leaf 5).Supported by the Defense Advanced Research Projects Agency. N00014-85-K-0357 Supported by the National Science Foundation. NSF-ECS-8310698 Supported by the Army Research Office. ARO-DAAL03-86-K-0171Whay Chiou Lee, Pierre Humblet

    Performance Enhancements for Asynchronous Random Access Protocols over Satellite

    Get PDF
    In this paper, a novel enhancement of the well known ALOHA random access mechanism is presented which largely extends the achievable throughput compared to traditional ALOHA and provides significantly lower packet loss rates. The novel mechanism, called Contention Resolution - ALOHA (CRA), is based on transmitting multiple replicas of a packet in an unslotted ALOHA system and applying interference cancellation techniques. In this paper the methodology for this new random access technique is presented, also w.r.t. existing Interference Cancellation (IC) techniques. Moreover numerical results for performance comparison with state of the art random access mechanisms, such as Contention Resolution Diversity Slotted ALOHA (CRDSA) are provided. Finally the benefit of taking strong forward error correcting codes for the performance of CRA is shown

    Slotted ALOHA in high speed bidrectional bus networks

    Get PDF
    Caption title.Includes bibliographical references (leaf 6).Supported by the Defense Advanced Research Projects Agency. N00014-84-K-00357 Supported by the National Science Foundation. NSF-ECS-7919880 Supported by the Army Research Office. ARO-DAAL03-86-K-0171Whay Chiou Lee, Pierre Humblet

    Achieving Max-Min Throughput in LoRa Networks

    Full text link
    With growing popularity, LoRa networks are pivotally enabling Long Range connectivity to low-cost and power-constrained user equipments (UEs). Due to its wide coverage area, a critical issue is to effectively allocate wireless resources to support potentially massive UEs in the cell while resolving the prominent near-far fairness problem for cell-edge UEs, which is challenging to address due to the lack of tractable analytical model for the LoRa network and its practical requirement for low-complexity and low-overhead design. To achieve massive connectivity with fairness, we investigate the problem of maximizing the minimum throughput of all UEs in the LoRa network, by jointly designing high-level policies of spreading factor (SF) allocation, power control, and duty cycle adjustment based only on average channel statistics and spatial UE distribution. By leveraging on the Poisson rain model along with tailored modifications to our considered LoRa network, we are able to account for channel fading, aggregate interference and accurate packet overlapping, and still obtain a tractable and yet accurate closed-form formula for the packet success probability and hence throughput. We further propose an iterative balancing (IB) method to allocate the SFs in the cell such that the overall max-min throughput can be achieved within the considered time period and cell area. Numerical results show that the proposed scheme with optimized design greatly alleviates the near-far fairness issue, and significantly improves the cell-edge throughput.Comment: 6 pages, 4 figures, published in Proc. International Conference on Computing, Networking and Communications (ICNC), 2020. This paper proposes stochastic-geometry based analytical framework for a single-cell LoRa network, with joint optimization to achieve max-min throughput for the users. Extended journal version for large-scale multi-cell LoRa network: arXiv:2008.0743

    Coded Slotted ALOHA: A Graph-Based Method for Uncoordinated Multiple Access

    Full text link
    In this paper, a random access scheme is introduced which relies on the combination of packet erasure correcting codes and successive interference cancellation (SIC). The scheme is named coded slotted ALOHA. A bipartite graph representation of the SIC process, resembling iterative decoding of generalized low-density parity-check codes over the erasure channel, is exploited to optimize the selection probabilities of the component erasure correcting codes via density evolution analysis. The capacity (in packets per slot) of the scheme is then analyzed in the context of the collision channel without feedback. Moreover, a capacity bound is developed and component code distributions tightly approaching the bound are derived.Comment: The final version to appear in IEEE Trans. Inf. Theory. 18 pages, 10 figure
    • 

    corecore