56 research outputs found

    Optical Time-Frequency Packing: Principles, Design, Implementation, and Experimental Demonstration

    Full text link
    Time-frequency packing (TFP) transmission provides the highest achievable spectral efficiency with a constrained symbol alphabet and detector complexity. In this work, the application of the TFP technique to fiber-optic systems is investigated and experimentally demonstrated. The main theoretical aspects, design guidelines, and implementation issues are discussed, focusing on those aspects which are peculiar to TFP systems. In particular, adaptive compensation of propagation impairments, matched filtering, and maximum a posteriori probability detection are obtained by a combination of a butterfly equalizer and four 8-state parallel Bahl-Cocke-Jelinek-Raviv (BCJR) detectors. A novel algorithm that ensures adaptive equalization, channel estimation, and a proper distribution of tasks between the equalizer and BCJR detectors is proposed. A set of irregular low-density parity-check codes with different rates is designed to operate at low error rates and approach the spectral efficiency limit achievable by TFP at different signal-to-noise ratios. An experimental demonstration of the designed system is finally provided with five dual-polarization QPSK-modulated optical carriers, densely packed in a 100 GHz bandwidth, employing a recirculating loop to test the performance of the system at different transmission distances.Comment: This paper has been accepted for publication in the IEEE/OSA Journal of Lightwave Technolog

    Iterative decoding for magnetic recording channels.

    Get PDF
    The success of turbo codes indicates that performance close to the Shannon limit may be achieved by iterative decoding. This has in turn stimulated interest in the performance of iterative detection for partial-response channels, which has been an active research area since 1999. In this dissertation, the performance of serially concatenated recording systems is investigated by computer simulations as well as experimentally. The experimental results show that the iterative detection algorithm is not sensitive to channel nonlinearities and the turbo coded partial-response channel is substantially better than partial-response maximum-likelihood channels. The classical iterative decoding algorithm was originally designed for additive white Gaussian noise channels. This dissertation shows that the performance of iterative detection can be significantly improved by considering the noise correlation of the magnetic recording channel. The idea is to iteratively estimate the correlated noise sequence at each iteration. To take advantage of the noise estimate, two prediction techniques were proposed, and the corresponding systems were named noise predictive turbo systems. These noise predictive turbo systems can be generalized to other detector architectures for magnetic recording channels straightforwardly

    System characterization and reception techniques for two-dimensional optical storage

    Get PDF

    Satellite Data Transmission (SDT) requirement

    Get PDF
    An 85 Mb/s modem/codec to operate in a 34 MHz C-band domestic satellite transponder at a system carrier to noise power ratio of 19.5 dB is discussed. Characteristics of a satellite channel and the approach adopted for the satellite data transmission modem/codec selection are discussed. Measured data and simulation results of the existing 50 Mbps link are compared and used to verify the simulation techniques. Various modulation schemes that were screened for the SDT are discussed and the simulated performance of two prime candidates, the 8 PSK and the SMSK/2 are given. The selection process that leads to the candidate codec techniques are documented and the technology of the modem/codec candidates is assessed. Costs of the modems and codecs are estimated

    Techniques of detection, estimation and coding for fading channels

    Get PDF
    The thesis describes techniques of detection, coding and estimation, for use in high speed serial modems operating over fading channels such as HF radio and land mobile radio links. The performance of the various systems that employ the above techniques are obtained via computer simulation tests. A review of the characteristics of HF radio channels is first presented, leading to the development of an appropriate channel model which imposes Rayleigh fading on the transmitted signal. Detection processes for a 4.8 kbit/s HF radio modem are then discussed, the emphasis, here, being on variants of the maximum likelihood detector that is implemented by the Viterbi algorithm. The performance of these detectors are compared with that of a nonlinear equalizer operating under the same conditions, and the detector which offers the best compromise between performance and complexity is chosen for further tests. Forward error correction, in the form of trellis coded modulation, is next introduced. An appropriate 8-PSK coded modulation scheme is discussed, and its operation over the above mentioned HF radio modem is evaluated. Performance comparisons are made of the coded and uncoded systems. Channel estimation techniques for fast fading channels akin to cellular land mobile radio links, are next discussed. A suitable model for a fast fading channel is developed, and some novel estimators are tested over this channel. Computer simulation tests are also used to study the feasibility of the simultaneous transmission of two 4-level QAM signals occupying the same frequency band, when each of these signals are transmitted at 24 kbit/s over two independently fading channels, to a single receiver. A novel combined detector/estimator is developed for this purpose. Finally, the performance of the complete 4.8 kbit/s HF radio modem is obtained, when all the functions of detection, estimation and prefiltering are present, where the prefilter and associated processor use a recently developed technique for the adjustment of its tap gains and for the estimation of the minimum phase sampled impulse response

    Cancellation of linear intersymbol interference for two-dimensional storage systems

    Full text link

    Cancellation of linear intersymbol interference for two-dimensional storage systems

    Get PDF
    This paper discusses the cancellation of linear intersymbol interference (ISI) in two-dimensional (2-D) systems. It develops a theory for the error rate of receivers that use tentative decisions to cancel ISI. It also formulates precise conditions under which such ISI cancellation can be applied effectively. For many 2-D systems, these conditions are easily met, and therefore the application of ISI cancellation is of significant interest. The theory and the conditions are validated by simulation results for a 2-D channel model. Furthermore, results for an experimental 2-D optical storage system show that, for a single-layer disk with a capacity of 50 GB, a substantial performance improvement may be obtained by applying ISI cancellation

    Design Techniques for High Performance Wireline Communication and Security Systems

    Full text link
    As the amount of data traffic grows exponentially on the internet, towards thousands of exabytes by 2020, high performance and high efficiency communication and security solutions are constantly in high demand, calling for innovative solutions. Within server communication dominates todays network data transfer, outweighing between-server and server-to-user data transfer by an order of magnitude. Solutions for within-server communication tend to be very wideband, i.e. on the order of tens of gigahertz, equalizers are widely deployed to provide extended bandwidth at reasonable cost. However, using equalizers typically costs the available signal-to-noise ratio (SNR) at the receiver side. What is worse is that the SNR available at the channel becomes worse as data rate increases, making it harder to meet the tight constraint on error rate, delay, and power consumption. In this thesis, two equalization solutions that address optimal equalizer implementations are discussed. One is a low-power high-speed maximum likelihood sequence detection (MLSD) that achieves record energy efficiency, below 10 pico-Joule per bit. The other one is a phase-shaping equalizer design that suppresses inter-symbol interference at almost zero cost of SNR. The growing amount of communication use also challenges the design of security subsystems, and the emerging need for post-quantum security adds to the difficulties. Most of currently deployed cryptographic primitives rely on the hardness of discrete logarithms that could potentially be solved efficiently with a powerful enough quantum computer. Efficient post-quantum encryption solutions have become of substantial value. In this thesis a fast and efficient lattice encryption application-specific integrated circuit is presented that surpasses the energy efficiency of embedded processors by 4 orders of magnitude.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146092/1/shisong_1.pd

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore