256 research outputs found

    Design of a digital compression technique for shuttle television

    Get PDF
    The determination of the performance and hardware complexity of data compression algorithms applicable to color television signals, were studied to assess the feasibility of digital compression techniques for shuttle communications applications. For return link communications, it is shown that a nonadaptive two dimensional DPCM technique compresses the bandwidth of field-sequential color TV to about 13 MBPS and requires less than 60 watts of secondary power. For forward link communications, a facsimile coding technique is recommended which provides high resolution slow scan television on a 144 KBPS channel. The onboard decoder requires about 19 watts of secondary power

    Manned spacecraft advanced digital television compression study. Volume 1 - Text Final report

    Get PDF
    Manned spacecraft advanced digital television compression stud

    Digital television system design study

    Get PDF
    The use of digital techniques for transmission of pictorial data is discussed for multi-frame images (television). Video signals are processed in a manner which includes quantization and coding such that they are separable from the noise introduced into the channel. The performance of digital television systems is determined by the nature of the processing techniques (i.e., whether the video signal itself or, instead, something related to the video signal is quantized and coded) and to the quantization and coding schemes employed

    Spatio-Spectral Sampling and Color Filter Array Design

    Get PDF
    Owing to the growing ubiquity of digital image acquisition and display, several factors must be considered when developing systems to meet future color image processing needs, including improved quality, increased throughput, and greater cost-effectiveness. In consumer still-camera and video applications, color images are typically obtained via a spatial subsampling procedure implemented as a color filter array (CFA), a physical construction whereby only a single component of the color space is measured at each pixel location. Substantial work in both industry and academia has been dedicated to post-processing this acquired raw image data as part of the so-called image processing pipeline, including in particular the canonical demosaicking task of reconstructing a full-color image from the spatially subsampled and incomplete data acquired using a CFA. However, as we detail in this chapter, the inherent shortcomings of contemporary CFA designs mean that subsequent processing steps often yield diminishing returns in terms of image quality. For example, though distortion may be masked to some extent by motion blur and compression, the loss of image quality resulting from all but the most computationally expensive state-of-the-art methods is unambiguously apparent to the practiced eye. ā€¦ As the CFA represents one of the first steps in the image acquisition pipeline, it largely determines the maximal resolution and computational efficiencies achievable by subsequent processing schemes. Here, we show that the attainable spatial resolution yielded by a particular choice of CFA is quantifiable and propose new CFA designs to maximize it. In contrast to the majority of the demosaicking literature, we explicitly consider the interplay between CFA design and properties of typical image data and its implications for spatial reconstruction quality. Formally, we pose the CFA design problem as simultaneously maximizing the allowable spatio-spectral support of luminance and chrominance channels, subject to a partitioning requirement in the Fourier representation of the sensor data. This classical aliasing-free condition preserves the integrity of the color image data and thereby guarantees exact reconstruction when demosaicking is implemented as demodulation (demultiplexing in frequency)

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended

    Adaptive frequency modulation for satellite television systems

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1990.Includes bibliographical references (p. 149-151).Work supported in part by the Advanced Television Research Program, the Graff Inst. Company Fellowship, the Hasler Foundation, Switzerland, the Swiss National Fund for Research, and the Brown Bovery Corporation, Switzerland.Julien Piot

    Multiple description video coding for stereoscopic 3D

    Get PDF
    In this paper, we propose an MDC schemes for stereoscopic 3D video. In the literature, MDC has previously been applied in 2D video but not so much in 3D video. The proposed algorithm enhances the error resilience of the 3D video using the combination of even and odd frame based MDC while retaining good temporal prediction efficiency for video over error-prone networks. Improvements are made to the original even and odd frame MDC scheme by adding a controllable amount of side information to improve frame interpolation at the decoder. The side information is also sent according to the video sequence motion for further improvement. The performance of the proposed algorithms is evaluated in error free and error prone environments especially for wireless channels. Simulation results show improved performance using the proposed MDC at high error rates compared to the single description coding (SDC) and the original even and odd frame MDC
    • ā€¦
    corecore