305 research outputs found

    Fairness Comparison of TCP Variants over Proactive and Reactive Routing Protocol in MANET

    Get PDF
    Mobile ad hoc networks (MANETs) are applicable in an infrastructureless environment where the mobile devices act as routers and intermediate nodes are used to transfer segments to their final destination. As Transmission control protocol (TCP) was originated for Internet with fundamentally different properties, faces serious challenges when used in mobile ad hoc networks. TCP functionality degrades, due to special properties of MANET such as route failure because of significant change of network topology and link errors. TCP uses Congestion Control Algorithms; TCP Vegas is one of them which claim to have better throughput comparing with other TCP variants in a wired network. Fairness issues of TCP Variants in MANET including existing routing protocol are still unsolved. To determine the best TCP Variants in MANET environment over renowned routing protocol is the main objective of this paper. A Study on the throughput fairness of TCP Variants namely, Vegas, Reno, New Reno, SACK, FACK, and Cubic are performed via simulation experiment using network simulator (ns-2) over existing routing protocol, named, AODV, AOMDV, DSDV, and DSR. This fairness evaluation of TCP flows arranged a contrast medium for the TCP Variants using stated routing protocol in MANET. However, TCP Vegas obtain unfair throughput in MANET. The simulation results show that TCP Reno outperforms other TCP variants under DSDV routing protocol

    Scattered Dropping Attack on TCP-Based Mobile Ad-Hoc Networks

    Get PDF
    Scattered Dropping Attack (SDA) is a simple yet very powerful denial of service (DoS) attack that is effective on both TCP and UDP based MANETs. The simulation results clearly show the impact of proposed attack on the network throughput, bandwidth wastage and received data quality. It has also been observed that even though the TCP congestion control is adaptable to the packet losses but in case of the dropping attack it is fully unable to detect whether the packet drop is the result of the attacker misbehaving or it is due to the congestion or other wireless environmental problem

    Performance Evaluation of Reactive Routing Protocols in MANETs in Association with TCP Newreno

    Get PDF
    We inspect the performance of TCP NewReno protocol for data transfer in Mobile Ad hoc networks (MANETs). Dynamic Source Routing (DSR) protocols and AdHoc On-demand Distance Vector (AODV) are standard reactive routing protocols widely used in MANETs. In addition we also have to consider Transmission Control Protocol (TCP) as essential for MANETs since it is one of the widely used internet protocol for dependable data transmission. TCP has its variants namely TCP Reno, TCP NewReno , TCP Vegas and TCP SACK. In this paper we are evaluating the performance of DSR and AODV in association with TCP Newreno with respect to various parameters such as Average throughput, instant throughput, residual energy, packet delivery ratio. The ns-2 network simulator was used for simulation

    Investigating TCP performance in mobile ad hoc networks

    Get PDF
    Mobile ad hoc networks (MANETs) have become increasingly important in view of their promise of ubiquitous connectivity beyond traditional fixed infrastructure networks. Such networks, consisting of potentially highly mobile nodes, have provided new challenges by introducing special consideration stemming from the unique characteristics of the wireless medium and the dynamic nature of the network topology. The TCP protocol, which has been widely deployed on a multitude of internetworks including the Internet, is naturally viewed as the de facto reliable transport protocol for use in MANETs. However, assumptions made at TCP’s inception reflected characteristics of the prevalent wired infrastructure of networks at the time and could subsequently lead to sub-optimal performance when used in wireless ad hoc environments. The basic presupposition underlying TCP congestion control is that packet losses are predominantly an indication of congestion in the network. The detrimental effect of such an assumption on TCP’s performance in MANET environments has been a long-standing research problem. Hence, previous work has focused on addressing the ambiguity behind the cause of packet loss as perceived by TCP by proposing changes at various levels across the network protocol stack, such as at the MAC mechanism of the transceiver or via coupling with the routing protocol at the network layer. The main challenge addressed by the current work is to propose new methods to ameliorate the illness-effects of TCP’s misinterpretation of the causes of packet loss in MANETs. An assumed restriction on any proposed modifications is that resulting performance increases should be achievable by introducing limited changes confined to the transport layer. Such a restriction aids incremental adoption and ease of deployment by requiring minimal implementation effort. Further, the issue of packet loss ambiguity, from a transport layer perspective, has, by definition, to be dealt with in an end-to-end fashion. As such, a proposed solution may involve implementation at the sender, the receiver or both to address TCP shortcomings. Some attempts at describing TCP behaviour in MANETs have been previously reported in the literature. However, a thorough enquiry into the performance of those TCP agents popular in terms of research and adoption has been lacking. Specifically, very little work has been performed on an exhaustive analysis of TCP variants across different MANET routing protocols and under various mobility conditions. The first part of the dissertation addresses this shortcoming through extensive simulation evaluation in order to ascertain the relative performance merits of each TCP variant in terms of achieved goodput over dynamic topologies. Careful examination reveals sub-par performance of TCP Reno, the largely equivalent performance of NewReno and SACK, whilst the effectiveness of a proactive TCP variant (Vegas) is explicitly stated and justified for the first time in a dynamic MANET environment. Examination of the literature reveals that in addition to losses caused by route breakages, the hidden terminal effect contributes significantly to non-congestion induced packet losses in MANETs, which in turn has noticeably negative impact on TCP goodput. By adapting the conservative slow start mechanism of TCP Vegas into a form suitable for reactive TCP agents, like Reno, NewReno and SACK, the second part of the dissertation proposes a new Reno-based congestion avoidance mechanism which increases TCP goodput considerably across long paths by mitigating the negative effects of hidden terminals and alleviating some of the ambiguity of non-congestion related packet loss in MANETs. The proposed changes maintain intact the end-to-end semantics of TCP and are solely applicable to the sender. The new mechanism is further contrasted with an existing transport layer-focused solution and is shown to perform significantly better in a range of dynamic scenarios. As solution from an end-to-end perspective may be applicable to either or both communicating ends, the idea of implementing receiver-side alterations is also explored. Previous work has been primarily concerned with reducing receiver-generated cumulative ACK responses by “bundling” them into as few packets as possible thereby reducing misinterpretations of packet loss due to hidden terminals. However, a thorough evaluation of such receiver-side solutions reveals limitations in common evaluation practices and the solutions themselves. In an effort to address this shortcoming, the third part of this research work first specifies a tighter problem domain, identifying the circumstances under which the problem may be tackled by an end-to-end solution. Subsequent original analysis reveals that by taking into account optimisations possible in wireless communications, namely the partial or complete omission of the RTS/CTS handshake, noticeable improvements in TCP goodput are achievable especially over long paths. This novel modification is activated in a variety of topologies and is assessed using new metrics to more accurately gauge its effectiveness in a wireless multihop environment

    Performance and Security Analysis for Proactive and Reactive Protocols in Mobile Ad-hoc Network

    Get PDF
    This paper discussed about two proactive protocols which are DSDV and OLSR as well as two reactive protocols which are AODV and DSR. In addition, security analyses have been conducted and it covered the possible attacks that can be implemented against Mobile Ad-hoc Network (MANET). Furthermore, analysis and the comparison studies of the routing protocols in MANET that is conducted by simulation are discussed. The metrics have been used to compare these routing protocols are throughput, end to end delay, packet delivery ratio fraction verses the number of nodes in AODV and DSR. A black hole security attack was simulated and analyzed for DSDV, AODV and DSR. This study also investigated the impact of the increased in number of nodes used in the simulation to have more accurate results for the analysis

    Performance metrics and routing in vehicular ad hoc networks

    Get PDF
    The aim of this thesis is to propose a method for enhancing the performance of Vehicular Ad hoc Networks (VANETs). The focus is on a routing protocol where performance metrics are used to inform the routing decisions made. The thesis begins by analysing routing protocols in a random mobility scenario with a wide range of node densities. A Cellular Automata algorithm is subsequently applied in order to create a mobility model of a highway, and wide range of density and transmission range are tested. Performance metrics are introduced to assist the prediction of likely route failure. The Good Link Availability (GLA) and Good Route Availability (GRA) metrics are proposed which can be used for a pre-emptive action that has the potential to give better performance. The implementation framework for this method using the AODV routing protocol is also discussed. The main outcomes of this research can be summarised as identifying and formulating methods for pre-emptive actions using a Cellular Automata with NS-2 to simulate VANETs, and the implementation method within the AODV routing protocol

    Performance Comparative Study of DSDV, E-DSDV, I-DSDV and O-DSDV MANET Routing Protocols

    Get PDF
    A Mobile Ad-hoc Network (MANET) is a dynamic single or multi-hop wireless network where nodes are connected wirelessly, and the network is self-configured. Due to the high mobility of nodes, network topology changes more frequently and thus, routing becomes a challenging task. Several routing protocols have been proposed by the researchers for MANETs like the well-known Destination Sequenced Distance Vector (DSDV) and its variants. It is a table-driven routing protocol that was mainly proposed to solve routing loop problems and it performs very well in sparse and low mobility environments. However, it suffers from several performance issues when implemented on high and dense MANETs. A number of modifications of DSDV have been proposed to make it more adaptive and suitable for different environments. In this paper, the performance of DSDV, E-DSDV, I-DSDV, and O-DSDV routing protocols is compared. The performance metrics that were considered in this analysis are packet delivery ratio, throughput, End-to-End delay, and routing overhead. Several simulation scenarios were carried out using the Network Simulator tool (NS3) by varying the number of nodes, pause time and velocity. The simulation results have shown that I-DSDV outperforms the others in low mobility scenarios, whereas O-DSDV has the best performance in high velocity environments
    • …
    corecore