339 research outputs found

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Space-time diversity for CDMA systems over frequency-selective fading channels

    Get PDF
    Supporting the expected high data rates required by wireless Internet and high-speed multimedia services is one of the basic requirements in broadband mobile wireless systems. However, the achievable capacity and data rate of wireless communication systems are limited by the time-varying nature of the channel. Efficient techniques for combating the time-varying effects of wireless channels can be achieved by utilizing different forms of diversity. In recent years, transmit diversity based on space-time coding (STC) has received more attention as an effective technique for combating fading. On the other hand, most existing space-time diversity techniques have been developed for flat-fading channels. Given the fact that wireless channels are generally frequency-selective, in this thesis, we aim to investigate the performance of space-time diversity schemes for wideband code-division multiple-access (WCDMA) systems over frequency-selective fading channels. The proposed receiver in this case is a rake-type receiver, which exploits the path diversity inherent to multipath propagation. Then, a decorrelator detector is used to mitigate the multiple access interference (MAI) and the known near-far problem. We derive the bit error rate (BER) expression over frequency-selective fading channels considering both the fast and slow fading cases. Finally, we show that our proposed receiver achieves the full system diversity through simulation and analytical results. Most of the work conducted in this area considers perfect knowledge of the channel at the receiver. Hence, channel identification brings significant challenges to multiple-input multiple-output (MIMO) CDMA systems. In light of this, we propose a channel estimation and data detection scheme based on the superimposed training-based approach. The proposed scheme enhances the performance by eliminating the MAI from both the channel and data estimates by employing two decorrelators; channel and data decorrelators. The performance of the proposed estimation technique is investigated over frequency-selective slow fading channels where we derived a closed-form expression for the BER as a function of the number of users, K , the number resolvable paths, L , and the number of receive antennas, V . Finally, our proposed scheme is shown to be more robust to channel estimation errors. Furthermore, both the analytical and simulation results indicate that the full system diversity is achieved. Considering that training estimation techniques suffer either from low spectral efficiency (i.e., conventional training approach) or from high pilot power consumption (i.e., superimposed training-based approach), in the last part of the thesis, we present an iterative joint detection and estimation (JDE) using the expectation-maximization (EM) algorithm for MIMO CDMA systems over frequency-selective fading channels. We also derive a closed-form expression for the optimized weight coefficients of the EM algorithm, which was shown to provide significant performance enhancement relative to the conventional equal-weight EM-based signal decomposition. Finally, our simulation results illustrate that the proposed receiver achieves near-optimum performance with modest complexity using very few training symbols

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Performance Analysis and Optimal Power Allocation for Linear Receivers Based on Superimposed Training

    Get PDF
    In this paper, we derive a performance comparison between two training-based schemes for Multiple-Input Multiple-Output (MIMO) systems. The two schemes are thetime-division multiplexing scheme and the recently proposed data-dependent superimposed pilot scheme. For both schemes, a closed-form expressions for the Bit Error Rate (BER) is provided. We also determine, for both schemes, the optimal allocation of power between pilot and data that minimizes the BER

    Estimation of Sparse MIMO Channels with Common Support

    Get PDF
    We consider the problem of estimating sparse communication channels in the MIMO context. In small to medium bandwidth communications, as in the current standards for OFDM and CDMA communication systems (with bandwidth up to 20 MHz), such channels are individually sparse and at the same time share a common support set. Since the underlying physical channels are inherently continuous-time, we propose a parametric sparse estimation technique based on finite rate of innovation (FRI) principles. Parametric estimation is especially relevant to MIMO communications as it allows for a robust estimation and concise description of the channels. The core of the algorithm is a generalization of conventional spectral estimation methods to multiple input signals with common support. We show the application of our technique for channel estimation in OFDM (uniformly/contiguous DFT pilots) and CDMA downlink (Walsh-Hadamard coded schemes). In the presence of additive white Gaussian noise, theoretical lower bounds on the estimation of SCS channel parameters in Rayleigh fading conditions are derived. Finally, an analytical spatial channel model is derived, and simulations on this model in the OFDM setting show the symbol error rate (SER) is reduced by a factor 2 (0 dB of SNR) to 5 (high SNR) compared to standard non-parametric methods - e.g. lowpass interpolation.Comment: 12 pages / 7 figures. Submitted to IEEE Transactions on Communicatio
    • …
    corecore