219 research outputs found

    3-D Hybrid Localization with RSS/AoA in Wireless Sensor Networks: Centralized Approach

    Get PDF
    This dissertation addresses one of the most important issues present in Wireless Sensor Networks (WSNs), which is the sensor’s localization problem in non-cooperative and cooperative 3-D WSNs, for both cases of known and unknown source transmit power PT . The localization of sensor nodes in a network is essential data. There exists a large number of applications for WSNs and the fact that sensors are robust, low cost and do not require maintenance, makes these types of networks an optimal asset to study or manage harsh and remote environments. The main objective of these networks is to collect different types of data such as temperature, humidity, or any other data type, depending on the intended application. The knowledge of the sensors’ locations is a key feature for many applications; knowing where the data originates from, allows to take particular type of actions that are suitable for each case. To face this localization problem a hybrid system fusing distance and angle measurements is employed. The measurements are assumed to be collected through received signal strength indicator and from antennas, extracting the received signal strength (RSS) and angle of arrival (AoA) information. For non-cooperativeWSN, it resorts to these measurements models and, following the least squares (LS) criteria, a non-convex estimator is developed. Next, it is shown that by following the square range (SR) approach, the estimator can be transformed into a general trust region subproblem (GTRS) framework. For cooperative WSN it resorts also to the measurement models mentioned above and it is shown that the estimator can be converted into a convex problem using semidefinite programming (SDP) relaxation techniques.It is also shown that the proposed estimators have a straightforward generalization from the known PT case to the unknown PT case. This generalization is done by making use of the maximum likelihood (ML) estimator to compute the value of the PT . The results obtained from simulations demonstrate a good estimation accuracy, thus validating the exceptional performance of the considered approaches for this hybrid localization system

    Robust state estimation methods for robotics applications

    Get PDF
    State estimation is an integral component of any autonomous robotic system. Finding the correct position, velocity, and orientation of an agent in its environment enables it to do other tasks like mapping and interacting with the environment, and collaborating with other agents. State estimation is achieved by using data obtained from multiple sensors and fusing them in a probabilistic framework. These include inertial data from Inertial Measurement Unit (IMU), images from camera, range data from lidars, and positioning data from Global Navigation Satellite Systems (GNSS) receivers. The main challenge faced in sensor-based state estimation is the presence of noisy, erroneous, and even lack of informative data. Some common examples of such situations include wrong feature matching between images or point clouds, false loop-closures due to perceptual aliasing (different places that look similar can confuse the robot), presence of dynamic objects in the environment (odometry algorithms assume a static environment), multipath errors for GNSS (signals for satellites jumping off tall structures like buildings before reaching receivers) and more. This work studies existing and new ways of how standard estimation algorithms like the Kalman filter and factor graphs can be made robust to such adverse conditions without losing performance in ideal outlier-free conditions. The first part of this work demonstrates the importance of robust Kalman filters on wheel-inertial odometry for high-slip terrain. Next, inertial data is integrated into GNSS factor graphs to improve the accuracy and robustness of GNSS factor graphs. Lastly, a combined framework for improving the robustness of non-linear least squares and estimating the inlier noise threshold is proposed and tested with point cloud registration and lidar-inertial odometry algorithms followed by an algorithmic analysis of optimizing generalized robust cost functions with factor graphs for GNSS positioning problem

    Privacy-Preserving Decentralized Optimization and Event Localization

    Get PDF
    This dissertation considers decentralized optimization and its applications. On the one hand, we address privacy preservation for decentralized optimization, where N agents cooperatively minimize the sum of N convex functions private to these individual agents. In most existing decentralized optimization approaches, participating agents exchange and disclose states explicitly, which may not be desirable when the states contain sensitive information of individual agents. The problem is more acute when adversaries exist which try to steal information from other participating agents. To address this issue, we first propose two privacy-preserving decentralized optimization approaches based on ADMM (alternating direction method of multipliers) and subgradient method, respectively, by leveraging partially homomorphic cryptography. To our knowledge, this is the first time that cryptographic techniques are incorporated in a fully decentralized setting to enable privacy preservation in decentralized optimization in the absence of any third party or aggregator. To facilitate the incorporation of encryption in a fully decentralized manner, we also introduce a new ADMM which allows time-varying penalty matrices and rigorously prove that it has a convergence rate of O(1/t). However, given that encryption-based algorithms unavoidably bring about extra computational and communication overhead in real-time optimization [61], we then propose another novel privacy solution for decentralized optimization based on function decomposition and ADMM which enables privacy without incurring large communication/computational overhead. On the other hand, we address the application of decentralized optimization to the event localization problem, which plays a fundamental role in many wireless sensor network applications such as environmental monitoring, homeland security, medical treatment, and health care. The event localization problem is essentially a non-convex and non-smooth problem. We address such a problem in two ways. First, a completely decentralized solution based on augmented Lagrangian methods and ADMM is proposed to solve the non-smooth and non-convex problem directly, rather than using conventional convex relaxation techniques. However, this algorithm requires the target event to be within the convex hull of the deployed sensors. To address this issue, we propose another two scalable distributed algorithms based on ADMM and convex relaxation, which do not require the target event to be within the convex hull of the deployed sensors. Simulation results confirm effectiveness of the proposed algorithms

    Localization and Mapping for Autonomous Driving: Fault Detection and Reliability Analysis

    Full text link
    Autonomous driving has advanced rapidly during the past decades and has expanded its application for multiple fields, both indoor and outdoor. One of the significant issues associated with a highly automated vehicle (HAV) is how to increase the safety level. A key requirement to ensure the safety of automated driving is the ability of reliable localization and navigation, with which intelligent vehicle/robot systems could successfully make reliable decisions for the driving path or react to the sudden events occurring within the path. A map with rich environment information is essential to support autonomous driving system to meet these high requirements. Therefore, multi-sensor-based localization and mapping methods are studied in this Thesis. Although some studies have been conducted in this area, a full quality control scheme to guarantee the reliability and to detect outliers in localization and mapping systems is still lacking. The quality of the integration system has not been sufficiently evaluated. In this research, an extended Kalman filter and smoother based quality control (EKF/KS QC) scheme is investigated and has been successfully applied for different localization and mapping scenarios. An EKF/KS QC toolbox is developed in MATLAB, which can be easily embedded and applied into different localization and mapping scenarios. The major contributions of this research are: a) The equivalence between least squares and smoothing is discussed, and an extended Kalman filter-smoother quality control method is developed according to this equivalence, which can not only be used to deal with system model outlier with detection, and identification, can also be used to analyse, control and improve the system quality. Relevant mathematical models of this quality control method have been developed to deal with issues such as singular measurement covariance matrices, and numerical instability of smoothing. b) Quality control analysis is conducted for different positioning system, including Global Navigation Satellite System (GNSS) multi constellation integration for both Real Time Kinematic (RTK) and Post Processing Kinematic (PPK), and the integration of GNSS and Inertial Navigation System (INS). The results indicate PPK method can provide more reliable positioning results than RTK. With the proposed quality control method, the influence of the detected outlier can be mitigated by directly correcting the input measurement with the estimated outlier value, or by adapting the final estimation results with the estimated outlier’s influence value. c) Mathematical modelling and quality control aspects for online simultaneous localization and mapping (SLAM) are examined. A smoother based offline SLAM method is investigated with quality control. Both outdoor and indoor datasets have been tested with these SLAM methods. Geometry analysis for the SLAM system has been done according to the quality control results. The system reliability analysis is essential for the SLAM designer as it can be conducted at the early stage without real-world measurement. d) A least squares based localization method is proposed that treats the High-Definition (HD) map as a sensor source. This map-based sensor information is integrated with other perception sensors, which significantly improves localization efficiency and accuracy. Geometry analysis is undertaken with the quality measures to analyse the influence of the geometry upon the estimation solution and the system quality, which can be hints for future design of the localization system. e) A GNSS/INS aided LiDAR mapping and localization procedure is developed. A high-density map is generated offline, then, LiDAR-based localization can be undertaken online with this pre-generated map. Quality control is conducted for this system. The results demonstrate that the LiDAR based localization within map can effectively improve the accuracy and reliability compared to the GNSS/INS only system, especially during the period that GNSS signal is lost

    Localization using Distance Geometry : Minimal Solvers and Robust Methods for Sensor Network Self-Calibration

    Get PDF
    In this thesis, we focus on the problem of estimating receiver and sender node positions given some form of distance measurements between them. This kind of localization problem has several applications, e.g., global and indoor positioning, sensor network calibration, molecular conformations, data visualization, graph embedding, and robot kinematics. More concretely, this thesis makes contributions in three different areas.First, we present a method for simultaneously registering and merging maps. The merging problem occurs when multiple maps of an area have been constructed and need to be combined into a single representation. If there are no absolute references and the maps are in different coordinate systems, they also need to be registered. In the second part, we construct robust methods for sensor network self-calibration using both Time of Arrival (TOA) and Time Difference of Arrival (TDOA) measurements. One of the difficulties is that corrupt measurements, so-called outliers, are present and should be excluded from the model fitting. To achieve this, we use hypothesis-and-test frameworks together with minimal solvers, resulting in methods that are robust to noise, outliers, and missing data. Several new minimal solvers are introduced to accommodate a range of receiver and sender configurations in 2D and 3D space. These solvers are formulated as polynomial equation systems which are solvedusing methods from algebraic geometry.In the third part, we focus specifically on the problems of trilateration and multilateration, and we present a method that approximates the Maximum Likelihood (ML) estimator for different noise distributions. The proposed approach reduces to an eigendecomposition problem for which there are good solvers. This results in a method that is faster and more numerically stable than the state-of-the-art, while still being easy to implement. Furthermore, we present a robust trilateration method that incorporates a motion model. This enables the removal of outliers in the distance measurements at the same time as drift in the motion model is canceled

    Stochastic Optimization For Multi-Agent Statistical Learning And Control

    Get PDF
    The goal of this thesis is to develop a mathematical framework for optimal, accurate, and affordable complexity statistical learning among networks of autonomous agents. We begin by noting the connection between statistical inference and stochastic programming, and consider extensions of this setup to settings in which a network of agents each observes a local data stream and would like to make decisions that are good with respect to information aggregated across the entire network. There is an open-ended degree of freedom in this problem formulation, however: the selection of the estimator function class which defines the feasible set of the stochastic program. Our central contribution is the design of stochastic optimization tools in reproducing kernel Hilbert spaces that yield optimal, accurate, and affordable complexity statistical learning for a multi-agent network. To obtain this result, we first explore the relative merits and drawbacks of different function class selections. In Part I, we consider multi-agent expected risk minimization this problem setting for the case that each agent seems to learn a common globally optimal generalized linear models (GLMs) by developing a stochastic variant of Arrow-Hurwicz primal-dual method. We establish convergence to the primal-dual optimal pair when either consensus or ``proximity constraints encode the fact that we want all agents\u27 to agree, or nearby agents to make decisions that are close to one another. Empirically, we observe that these convergence results are substantiated but that convergence may not translate into statistical accuracy. More broadly, optimality within a given estimator function class is not the same as one that makes minimal inference errors. The optimality-accuracy tradeoff of GLMs motivates subsequent efforts to learn more sophisticated estimators based upon learned feature encodings of the data that is fed into the statistical model. The specific tool we turn to in Part II is dictionary learning, where we optimize both over regression weights and an encoding of the data, which yields a non-convex problem. We investigate the use of stochastic methods for online task-driven dictionary learning, and obtain promising performance for the task of a ground robot learning to anticipate control uncertainty based on its past experience. Heartened by this implementation, we then consider extensions of this framework for a multi-agent network to each learn globally optimal task-driven dictionaries based on stochastic primal-dual methods. However, it is here the non-convexity of the optimization problem causes problems: stringent conditions on stochastic errors and the duality gap limit the applicability of the convergence guarantees, and impractically small learning rates are required for convergence in practice. Thus, we seek to learn nonlinear statistical models while preserving convexity, which is possible through kernel methods ( Part III). However, the increased descriptive power of nonparametric estimation comes at the cost of infinite complexity. Thus, we develop a stochastic approximation algorithm in reproducing kernel Hilbert spaces (RKHS) that ameliorates this complexity issue while preserving optimality: we combine the functional generalization of stochastic gradient method (FSGD) with greedily constructed low-dimensional subspace projections based on matching pursuit. We establish that the proposed method yields a controllable trade-off between optimality and memory, and yields highly accurate parsimonious statistical models in practice. % Then, we develop a multi-agent extension of this method by proposing a new node-separable penalty function and applying FSGD together with low-dimensional subspace projections. This extension allows a network of autonomous agents to learn a memory-efficient approximation to the globally optimal regression function based only on their local data stream and message passing with neighbors. In practice, we observe agents are able to stably learn highly accurate and memory-efficient nonlinear statistical models from streaming data. From here, we shift focus to a more challenging class of problems, motivated by the fact that true learning is not just revising predictions based upon data but augmenting behavior over time based on temporal incentives. This goal may be described by Markov Decision Processes (MDPs): at each point, an agent is in some state of the world, takes an action and then receives a reward while randomly transitioning to a new state. The goal of the agent is to select the action sequence to maximize its long-term sum of rewards, but determining how to select this action sequence when both the state and action spaces are infinite has eluded researchers for decades. As a precursor to this feat, we consider the problem of policy evaluation in infinite MDPs, in which we seek to determine the long-term sum of rewards when starting in a given state when actions are chosen according to a fixed distribution called a policy. We reformulate this problem as a RKHS-valued compositional stochastic program and we develop a functional extension of stochastic quasi-gradient algorithm operating in tandem with the greedy subspace projections mentioned above. We prove convergence with probability 1 to the Bellman fixed point restricted to this function class, and we observe a state of the art trade off in memory versus Bellman error for the proposed method on the Mountain Car driving task, which bodes well for incorporating policy evaluation into more sophisticated, provably stable reinforcement learning techniques, and in time, developing optimal collaborative multi-agent learning-based control systems

    Problems in Control, Estimation, and Learning in Complex Robotic Systems

    Get PDF
    In this dissertation, we consider a range of different problems in systems, control, and learning theory and practice. In Part I, we look at problems in control of complex networks. In Chapter 1, we consider the performance analysis of a class of linear noisy dynamical systems. In Chapter 2, we look at the optimal design problems for these networks. In Chapter 3, we consider dynamical networks where interactions between the networks occur randomly in time. And in the last chapter of this part, in Chapter 4, we look at dynamical networks wherein coupling between the subsystems (or agents) changes nonlinearly based on the difference between the state of the subsystems. In Part II, we consider estimation problems wherein we deal with a large body of variables (i.e., at large scale). This part starts with Chapter 5, in which we consider the problem of sampling from a dynamical network in space and time for initial state recovery. In Chapter 6, we consider a similar problem with the difference that the observations instead of point samples become continuous observations that happen in Lebesgue measurable observations. In Chapter 7, we consider an estimation problem in which the location of a robot during the navigation is estimated using the information of a large number of surrounding features and we would like to select the most informative features using an efficient algorithm. In Part III, we look at active perception problems, which are approached using reinforcement learning techniques. This part starts with Chapter 8, in which we tackle the problem of multi-agent reinforcement learning where the agents communicate and classify as a team. In Chapter 9, we consider a single agent version of the same problem, wherein a layered architecture replaces the architectures of the previous chapter. Then, we use reinforcement learning to design the meta-layer (to select goals), action-layer (to select local actions), and perception-layer (to conduct classification)

    Quantitative Image Simulation and Analysis of Nanoparticles

    Get PDF
    • …
    corecore