928 research outputs found

    Differential Modulation and Non-Coherent Detection in Wireless Relay Networks

    Get PDF
    The technique of cooperative communications is finding its way in the next generations of many wireless communication applications. Due to the distributed nature of cooperative networks, acquiring fading channels information for coherent detection is more challenging than in the traditional point-to-point communications. To bypass the requirement of channel information, differential modulation together with non-coherent detection can be deployed. This thesis is concerned with various issues related to differential modulation and non-coherent detection in cooperative networks. Specifically, the thesis examines the behaviour and robustness of non-coherent detection in mobile environments (i.e., time-varying channels). The amount of channel variation is related to the normalized Doppler shift which is a function of user's mobility. The Doppler shift is used to distinguish between slow time-varying (slow-fading) and rapid time-varying (fast-fading) channels. The performance of several important relay topologies, including single-branch and multi-branch dual-hop relaying with/without a direct link that employ amplify-and-forward relaying and two-symbol non-coherent detection, is analyzed. For this purpose, a time-series model is developed for characterizing the time-varying nature of the cascaded channel encountered in amplify-and-forward relaying.Comment: PhD Dissertatio

    Selection Combiner in Time-Varying Amplify Forward Cooperative Communication

    Get PDF
    This research presents the diversity combining schemes for Multiple Symbol Double Differential Sphere Detection (MSDDSD) in a time-varying amplify-and-forward wireless cooperative communication network. Four diversity combiners, including direct combiner, Maximal Ratio Combiner (MRC), semi MRC and Selection Combiner (SC) are demonstrated and explained in details. A comprehensive error probability and outage probability performance analysis are carried through the flat fading Rayleigh environment for semi MRC and SC. Specifically, error performance analysis is obtained using the PDF for SC detectors. Finally, power allocation expression based on error performance minimization approach is presented for the proposed SC performance optimization. It is observed that the performance analysis matches well with the simulation results. Furthermore, the proposed SC scheme offers better performance among the conventional MRC and direct combiner schemes in the presence of frequency offsets

    Cooperative Relaying In Power Line Environment: A Survey and Tutorial

    Get PDF
    Exchange of information is essential in any society and the demand for faster, cheaper, and secure communications is increasing every day. With other hi-tech initiatives like IPv6 and Internet-of-Things (IOT) already in the horizon, demand for broadband is set to escalate beyond its current level. Inherently laden in the challenges posed by this technology are fresh opportunities in terms of penetration of data services into rural communities and development of innovative strategies for more efficient use of the grid. Though still in its developmental phase/stage, Power Line Communication (PLC) has grown beyond theoretical fantasy to become a reality. The proofs are the readily available PLC systems that can be purchased off the shelfto achieve in-house networking and the much talked about, smart metering technology; generally regarded as the “new bride” in utilities industry. One of the biggest gains of PLC is its use of existing electrical cables, thereby eliminating cost of installation and maintenance of data cables. However, given that the power infrastructure was traditionally built to deliver electricity, data signals do suffer various forms of distortions and impairments as they transit it. This paper presents a tutorial on the deployed wireless system technique which is to be adapted to PLC scenario for the purpose of managing the available source energy for achieving reliable communication system. One of these techniques is the cooperative diversity. Its application and deployment in power line environment is explored. The improvement achieved through cooperative diversity in some PLC systems were presented along with the associated limitations. Finally, future areas of research which will further improve the reliability of PLC systems and reduce its power consumption during transmission is shown
    corecore