6,434 research outputs found

    Query processing in temporal object-oriented databases

    Get PDF
    This PhD thesis is concerned with historical data management in the context of objectoriented databases. An extensible approach has been explored to processing temporal object queries within a uniform query framework. By the uniform framework, we mean temporal queries can be processed within the existing object-oriented framework that is extended from relational framework, by extending the existing query processing techniques and strategies developed for OODBs and RDBs. The unified model of OODBs and RDBs in UmSQL/X has been adopted as a basis for this purpose. A temporal object data model is thereby defined by incorporating a time dimension into this unified model of OODBs and RDBs to form temporal relational-like cubes but with the addition of aggregation and inheritance hierarchies. A query algebra, that accesses objects through these associations of aggregation, inheritance and timereference, is then defined as a general query model /language. Due to the extensive features of our data model and reducibility of the algebra, a layered structure of query processor is presented that provides a uniforrn framework for processing temporal object queries. Within the uniform framework, query transformation is carried out based on a set of transformation rules identified that includes the known relational and object rules plus those pertaining to the time dimension. To evaluate a temporal query involving a path with timereference, a strategy of decomposition is proposed. That is, evaluation of an enhanced path, which is defined to extend a path with time-reference, is decomposed by initially dividing the path into two sub-paths: one containing the time-stamped class that can be optimized by making use of the ordering information of temporal data and another an ordinary sub-path (without time-stamped classes) which can be further decomposed and evaluated using different algorithms. The intermediate results of traversing the two sub-paths are then joined together to create the query output. Algorithms for processing the decomposed query components, i. e., time-related operation algorithms, four join algorithms (nested-loop forward join, sort-merge forward join, nested-loop reverse join and sort-merge reverse join) and their modifications, have been presented with cost analysis and implemented with stream processing techniques using C++. Simulation results are also provided. Both cost analysis and simulation show the effects of time on the query processing algorithms: the join time cost is linearly increased with the expansion in the number of time-epochs (time-dimension in the case of a regular TS). It is also shown that using heuristics that make use of time information can lead to a significant time cost saving. Query processing with incomplete temporal data has also been discussed

    Exploring run-time reduction in programming codes via query optimization and caching

    Get PDF
    Object oriented programming languages raised the level of abstraction by supporting the explicit first class query constructs in the programming codes. These query constructs allow programmers to express operations on collections more abstractly than relying on their realization in loops or through provided libraries. Join optimization techniques from the field of database technology support efficient realizations of such language constructs. However, the problem associated with the existing techniques such as query optimization in Java Query Language (JQL) incurs run time overhead. Besides the programming languages supporting first-class query constructs, the usage of annotations has also increased in the software engineering community recently. Annotations are a common means of providing metadata information to the source code. The object oriented programming languages such as C# provides attributes constraints and Java has its own annotation constructs that allow the developers to include the metadata information in the program codes. This work introduces a series of query optimization approaches to reduce the run time of the programs involving explicit queries over collections. The proposed approaches rely on histograms to estimate the selectivity of the predicates and the joins in order to construct the query plans. The annotations in the source code are also utilized to gather the metadata required for the selectivity estimation of the numerical as well as the string valued predicates and joins in the queries. Several cache heuristics are proposed that effectively cache the results of repeated queries in the program codes. The cached query results are incrementally maintained up-to-date after the update operations to the collections --Abstract, page iv

    Old Techniques for New Join Algorithms: A Case Study in RDF Processing

    Full text link
    Recently there has been significant interest around designing specialized RDF engines, as traditional query processing mechanisms incur orders of magnitude performance gaps on many RDF workloads. At the same time researchers have released new worst-case optimal join algorithms which can be asymptotically better than the join algorithms in traditional engines. In this paper we apply worst-case optimal join algorithms to a standard RDF workload, the LUBM benchmark, for the first time. We do so using two worst-case optimal engines: (1) LogicBlox, a commercial database engine, and (2) EmptyHeaded, our prototype research engine with enhanced worst-case optimal join algorithms. We show that without any added optimizations both LogicBlox and EmptyHeaded outperform two state-of-the-art specialized RDF engines, RDF-3X and TripleBit, by up to 6x on cyclic join queries-the queries where traditional optimizers are suboptimal. On the remaining, less complex queries in the LUBM benchmark, we show that three classic query optimization techniques enable EmptyHeaded to compete with RDF engines, even when there is no asymptotic advantage to the worst-case optimal approach. We validate that our design has merit as EmptyHeaded outperforms MonetDB by three orders of magnitude and LogicBlox by two orders of magnitude, while remaining within an order of magnitude of RDF-3X and TripleBit

    Intelligent Data Storage and Retrieval for Design Optimisation – an Overview

    Get PDF
    This paper documents the findings of a literature review conducted by the Sir Lawrence Wackett Centre for Aerospace Design Technology at RMIT University. The review investigates aspects of a proposed system for intelligent design optimisation. Such a system would be capable of efficiently storing (and compressing if required) a range of types of design data into an intelligent database. This database would be accessed by the system during subsequent design processes, allowing for search of relevant design data for re-use in later designs, allowing it to become very efficient in reducing the time for later designs as the database grows in size. Extensive research has been performed, in both theoretical aspects of the project, and practical examples of current similar systems. This research covers the areas of database systems, database queries, representation and compression of design data, geometric representation and heuristic methods for design applications.
    • …
    corecore