158 research outputs found

    Secrecy performance of TAS/SC-based multi-hop harvest-to-transmit cognitive WSNs under joint constraint of interference and hardware imperfection

    Get PDF
    In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.Web of Science195art. no. 116

    Power Allocation for Proactive Eavesdropping with Spoofing Relay in UAV Systems

    Get PDF
    Unmanned aerial vehicles (UAVs) are used in legitimate surveillance systems. In this paper, we consider a wireless monitor system that consists of three UAVs. One UAV acts as a legitimate eavesdropper that adopts 1) spoofing relaying and 2) proactive eavesdropping via jamming techniques. In particular, two scenarios are considered if the legitimate eavesdropper has enough power for successful eavesdropping throughout flight time. If the legitimate eavesdropper has enough power, the formulated problem is a convex optimization problem, which can be solved by standard convex optimization techniques. If not, we formulate a non-convex optimization problem and solve it by an iterative algorithm. Numerical results show that the proposed power allocation scheme outperforms the passive eavesdropping and equally distributed jamming power allocation schemes

    Analysis of probability of non-zero secrecy capacity for multi-hop networks in presence of hardware impairments over Nakagami-m fading channels

    Get PDF
    In this paper, we evaluate probability of non-zero secrecy capacity of multi-hop relay networks over Nakagamim fading channels in presence of hardware impairments. In the considered protocol, a source attempts to transmit its data to a destination by using multi-hop randomize-and-forward (RF) strategy. The data transmitted by the source and relays are overheard by an eavesdropper. For performance evaluation, we derive exact expressions of probability of non-zero secrecy capacity (PoNSC), which are expressed by sums of infinite series of exponential functions and exponential integral functions. We then perform Monte Carlo simulations to verify the theoretical analysis.Web of Science25478277

    Performance of multi-hop cognitive MIMO relaying networks with joint constraint of intercept probability and limited interference

    Get PDF
    In this paper, we propose a multi-hop multiple input multiple output (MIMO) decode-and-forward relaying protocol in cognitive radio networks. In this protocol, a multi-antenna secondary source attempts to send its data to a multi-antenna secondary destination with assistance of multiple intermediate multi-antenna nodes, in presence of a multi-antenna secondary eavesdropper. A primary network includes a primary transmitter and a primary receiver which are equipped with multiple antennas, and use transmit antenna selection (TAS) and selection combining (SC) to communicate with each other. Operating on the underlay spectrum sharing method, the secondary source and relay nodes have to adjust their transmit power so that the outage performance of the primary network is not harmful and satisfy the quality of service (QoS). Moreover, these secondary nodes also reduce their transmit power so that the intercept probability (IP) at the eavesdropper at each hop is below a desired value. To improve the outage performance of the secondary network under the joint constraint of IP and limited interference, the TAS/SC method is employed to relay the source data hop-by-hop to the destination. We derived exact closed-form expressions of the end-to-end (e2e) outage probability (OP) and IP of the proposed protocol over Rayleigh fading channels. Monte Carlo simulations are then performed to verify the theoretical derivations

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    On secure communication in integrated internet and heterogeneous multi-hop wireless networks.

    Get PDF
    Integration of the Internet with a Cellular Network, WMAN, WLAN, and MANET presents an exceptional promise by having co-existence of conventional WWANs/WMANs/WLANs with wireless ad hoc networks to provide ubiquitous communication. We call such integrated networks providing internet accessibility for mobile users as heterogeneous multi-hop wireless networks where the Internet and wireless infrastructure such as WLAN access points (APs) and base stations (BSs) constitute the backbone for various emerging wireless networks (e.g., multi-hop WLAN and ad hoc networks. Earlier approaches for the Internet connectivity either provide only unidirectional connectivity for ad hoc hosts or cause high overhead as well as delay for providing full bi-directional connections. In this dissertation, a new protocol is proposed for integrated Internet and ad hoc networks for supporting bi-directional global connectivity for ad hoc hosts. In order to provide efficient mobility management for mobile users in an integrated network, a mobility management protocol called multi-hop cellular IP (MCIP) has been proposed to provide a micro-mobility management framework for heterogeneous multi-hop network. The micro-mobility is achieved by differentiating the local domain from the global domain. At the same time, the MCIP protocol extends Mobile IP protocol for providing macro-mobility support between local domains either for single hop MSs or multi-hop MSs. In the MCIP protocol, new location and mobility management approaches are developed for tracking mobile stations, paging, and handoff management. This dissertation also provides a security protocol for integrated Internet and MANET to establish distributed trust relationships amongst mobile infrastructures. This protocol protects communication between two mobile stations against the attacks either from the Internet side or from wireless side. Moreover, a secure macro/micro-mobility protocol (SM3P) have been introduced and evaluated for preventing mobility-related attacks either for single-hop MSs or multi-hop MSs. In the proposed SM3P, mobile IP security has been extended for supporting macro-mobility across local domains through the process of multi-hop registration and authentication. In a local domain, a certificate-based authentication achieves the effective routing and micro-mobility protection from a range of potential security threats
    corecore