170 research outputs found

    Recent Advances in Theory and Methods for Nonstationary Signal Analysis

    Get PDF
    Cataloged from PDF version of article.All physical processes are nonstationary. When analyzing time series, it should be remembered that nature can be amazingly complex and that many of the theoretical constructs used in stochastic process theory, for example, linearity, ergodicity, normality, and particularly stationarity, are mathematical fairy tales. There are no stationary time series in the strict mathematical sense; at the very least, everything has a beginning and an end. Thus, while it is necessary to know the theory of stationary processes, one should not adhere to it dogmatically when analyzing data from physical sources, particularly when the observations span an extended period. Nonstationary signals are appropriate models for signals arising in several fields of applications including communications, speech and audio, mechanics, geophysics, climatology, solar and space physics, optics, and biomedical engineering. Nonstationary models account for possible time variations of statistical functions and/or spectral characteristics of signals. Thus, they provide analysis tools more general than the classical Fourier transform for finite-energy signals or the power spectrum for finite-power stationary signals. Nonstationarity, being a “nonproperty” has been analyzed from several different points of view. Several approaches that generalize the traditional concepts of Fourier analysis have been considered, including time-frequency, time-scale, and wavelet analysis, and fractional Fourier and linear canonical transforms

    Recent Advances in Theory and Methods for Nonstationary Signal Analysis

    Get PDF
    Cataloged from PDF version of article.All physical processes are nonstationary. When analyzing time series, it should be remembered that nature can be amazingly complex and that many of the theoretical constructs used in stochastic process theory, for example, linearity, ergodicity, normality, and particularly stationarity, are mathematical fairy tales. There are no stationary time series in the strict mathematical sense; at the very least, everything has a beginning and an end. Thus, while it is necessary to know the theory of stationary processes, one should not adhere to it dogmatically when analyzing data from physical sources, particularly when the observations span an extended period. Nonstationary signals are appropriate models for signals arising in several fields of applications including communications, speech and audio, mechanics, geophysics, climatology, solar and space physics, optics, and biomedical engineering. Nonstationary models account for possible time variations of statistical functions and/or spectral characteristics of signals. Thus, they provide analysis tools more general than the classical Fourier transform for finite-energy signals or the power spectrum for finite-power stationary signals. Nonstationarity, being a “nonproperty” has been analyzed from several different points of view. Several approaches that generalize the traditional concepts of Fourier analysis have been considered, including time-frequency, time-scale, and wavelet analysis, and fractional Fourier and linear canonical transforms

    Digital transmission systems operating over high frequency radio channels

    Get PDF
    Imperial Users onl

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Study of modulation techniques for multiple access satellite communications

    Get PDF
    Multiple access communication utilizing small ground stations for satellite communication modulation - multiplexing technique
    corecore