2,460 research outputs found

    Performance of Optical Spatial Modulation in Indoor Multipath Channel

    Get PDF

    Spread spectrum techniques for indoor wireless IR communications

    Get PDF
    Multipath dispersion and fluorescent light interference are two major problems in indoor wireless infrared communications systems. Multipath dispersion introduces intersymhol interference at data rates above 10 Mb/s, while fluorescent light induces severe narrowband interference to baseband modulation schemes commonly used such as OOK and PPM. This article reviews the research into the application of direct sequence spread spectrum techniques to ameliorate these key channel impairments without having to resort to complex signal processing techniques. The inherent properties of a spreading sequence are exploited in order to combat the ISI and narrowband interference. In addition, to reduce the impact of these impairments, the DSSS modulation schemes have strived to be bandwidth-efficient and simple to implement. Three main DSSS waveform techniques have been developed and investigated. These are sequence inverse keying, complementary sequence inverse keying, and M-ary biorthogonal keying (MBOK). The operations of the three systems are explained; their performances were evaluated through simulations and experiments for a number of system parameters, including spreading sequence type and length. By comparison with OOK, our results show that SIK, CSIK, and MBOK are effective against multipath dispersion and fluorescent light interference becausc the penalties incurred on the DSSS schemes are between 0-7 dB, while the penalty on OOK in the same environment is more than 17 dB. The DSSS solution for IR wireless transmission demonstrates that a transmission waveform can he designed to remove the key channel impairments in a wireless IR system

    Optical Asymmetric Modulation for VLC Systems

    Get PDF
    The explosive growth of connected devices and the increasing number of broadband users have led to an unprecedented growth in traffic demand. To this effect, the next generation wireless systems are envisioned to meet this growth and offer a potential data rate of 10 Gbps or more. In this context, an attractive solution to the current spectrum crunch issue is to exploit the visible light spectrum for the realization of high-speed commutation systems. However, this requires solutions to certain challenges relating to visible light communications (VLC), such as the stringent requirements of VLC-based intensity modulation and direct detection (IM/DD), which require signals to be real and unipolar. The present work proposes a novel power-domain multiplexing based optical asymmetric modulation (OAM) scheme for indoor VLC systems, which is particularly adapted to transmit high-order modulation signals using linear real and unipolar constellations that fit into the restrictions of IM/DD systems. It is shown that the proposed scheme provides improved system performance that outperforms alternative modulation schemes, at no extra complexity

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Spatial Carrierless Amplitude and Phase Modulation Technique for Visible Light Communication Systems

    Get PDF
    • …
    corecore