1,509 research outputs found

    On the Impact of Singleton Strategies in Congestion Games

    Get PDF
    To what extent does the structure of the players\u27 strategy space influence the efficiency of decentralized solutions in congestion games? In this work, we investigate whether better performance is possible when restricting to load balancing games in which players can only choose among single resources. We consider three different solutions concepts, namely, approximate pure Nash equilibria, approximate one-round walks generated by selfish players aiming at minimizing their personal cost and approximate one-round walks generated by cooperative players aiming at minimizing the marginal increase in the sum of the players\u27 personal costs. The last two concepts can also be interpreted as solutions of simple greedy online algorithms for the related resource selection problem. Under fairly general latency functions on the resources, we show that, for all three types of solutions, better bounds cannot be achieved if players are either weighted or asymmetric. On the positive side, we prove that, under mild assumptions on the latency functions, improvements on the performance of approximate pure Nash equilibria are possible for load balancing games with weighted and symmetric players in the case of identical resources. We also design lower bounds on the performance of one-round walks in load balancing games with unweighted players and identical resources (in this case, solutions generated by selfish and cooperative players coincide)

    The Value of Cultural Heritage Sites in Armenia: Evidence from a Travel Cost Method Study

    Get PDF
    This paper applies the travel cost method to visits to cultural sites in Armenia by domestic visitors. Respondents intercepted at four cultural monuments provided information on their visitation patterns, experience at the site, perception of the state of conservation of the monuments, and rating of the quality of the services and infrastructures. We combine actual trips with stated trips under hypothetical programs that would enhance the conservation of the monuments and improve one of (i) the cultural experience at the site, (ii) the quality of the infrastructure, or (iii) the quality of the services, and use the combined actual and stated trips to fit a panel data model. Our investigation shows that that there are significant use values associated with the four study monuments, and that conservation programs and initiatives that improve the cultural experience, or simply make it easier for the respondent to reach and spend time at the monument, are valued by domestic visitors and would encourage higher visitation rates.Valuation of cultural heritage sites, Non-market valuation, Travel cost, Consumer surplus, Contingent behavior

    Rendezvous in Networks in Spite of Delay Faults

    Full text link
    Two mobile agents, starting from different nodes of an unknown network, have to meet at the same node. Agents move in synchronous rounds using a deterministic algorithm. Each agent has a different label, which it can use in the execution of the algorithm, but it does not know the label of the other agent. Agents do not know any bound on the size of the network. In each round an agent decides if it remains idle or if it wants to move to one of the adjacent nodes. Agents are subject to delay faults: if an agent incurs a fault in a given round, it remains in the current node, regardless of its decision. If it planned to move and the fault happened, the agent is aware of it. We consider three scenarios of fault distribution: random (independently in each round and for each agent with constant probability 0 < p < 1), unbounded adver- sarial (the adversary can delay an agent for an arbitrary finite number of consecutive rounds) and bounded adversarial (the adversary can delay an agent for at most c consecutive rounds, where c is unknown to the agents). The quality measure of a rendezvous algorithm is its cost, which is the total number of edge traversals. For random faults, we show an algorithm with cost polynomial in the size n of the network and polylogarithmic in the larger label L, which achieves rendezvous with very high probability in arbitrary networks. By contrast, for unbounded adversarial faults we show that rendezvous is not feasible, even in the class of rings. Under this scenario we give a rendezvous algorithm with cost O(nl), where l is the smaller label, working in arbitrary trees, and we show that \Omega(l) is the lower bound on rendezvous cost, even for the two-node tree. For bounded adversarial faults, we give a rendezvous algorithm working for arbitrary networks, with cost polynomial in n, and logarithmic in the bound c and in the larger label L
    • …
    corecore