1,403 research outputs found

    PLC for the smart grid: state-of-the-art and challenges

    Get PDF
    This paper aims to review systems and applications for power line communications (PLC) in the context of the smart grid. We discuss the main applications and summarise state-of-the-art PLC systems and standards. We report efforts and challenges in channel and noise modelling, as well as in state-of-the-art transmission technology approaches

    Subband filtered multi-carrier systems for multi-service wireless communications

    Get PDF
    Flexibly supporting multiple services, each with different communication requirements and frame structure, has been identified as one of the most significant and promising characteristics of next generation and beyond wireless communication systems. However, integrating multiple frame structures with different subcarrier spacing in one radio carrier may result in significant inter-service-band-interference (ISBI). In this paper, a framework for multi-service (MS) systems is established based on a subband filtered multi-carrier system. The subband filtering implementations and both asynchronous and generalized synchronous (GS) MS subband filtered multi-carrier (SFMC) systems have been proposed. Based on the GS-MS-SFMC system, the system model with ISBI is derived and a number of properties on ISBI are given. In addition, low-complexity ISBI cancelation algorithms are proposed by precoding the information symbols at the transmitter. For asynchronous MS-SFMC system in the presence of transceiver imperfections, including carrier frequency offset, timing offset, and phase noise, a complete analytical system model is established in terms of desired signal, inter-symbol-interference, inter-carrier-interference, ISBI, and noise. Thereafter, new channel equalization algorithms are proposed by considering the errors and imperfections. Numerical analysis shows that the analytical results match the simulation results, and the proposed ISBI cancelation and equalization algorithms can significantly improve the system performance in comparison with the existing algorithms

    Power Line Communication (PLC) Impulsive Noise Mitigation: A Review

    Get PDF
    Power Line Communication (PLC) is a technology which transforms the power line into pathways for the conveyance of broadband data. It has the advantage for it can avoid new installation since the current installation used for electrical power can also be used for data transmission. However, this power line channel presents a harsh environment for data transmission owing to the challenges of impulsive noise, high attenuation, selective fading and etc. Impulsive noise poses a severe challenge as its Power Spectral Density (PSD) is between 10–15dB above background noise. For good performance of the PLC system, this noise must be mitigated.  This paper presents a review of the techniques for the mitigation of impulsive noise in PLC which is classified into four categories, namely time domain, time/frequency domain, error correction code and other techniques. Time domain technique is a memoryless nonlinear technique where the signal's amplitude only changes according to a specified threshold without changing the phase.  Mitigation of impulsive noise is carried out on the received time domain signal before the demodulation FFT operation of the OFDM. Time/Frequency technique is a method of mitigating impulsive noise on the received signal at both before FFT demodulation and after FFT demodulation of the OFDM system. Error correction code technique is the application of forward error correction code by adding redundancy bits to the useful data bits for detection and possibly correction of error occurring during transmission.  Identifying the best performing technique will enhance the deployment of the technique while exploring the PLC channel capacity enhancement in the future. The best performing scheme in each of the category were selected and their BER vs SNR curves were compared with respect to the impulsive noise + awgn curve. Amongst all of these techniques, the error correction code technique had a performance that presents almost an outright elimination of impulsive noise in power line channel. Keywords: Impulsive noise, time domain, time/frequency domain, error correction code, sparse Bayesian learning, recursive detection and modified PLC-DMT

    Mitigation of impulsive noise in OFDM channels using ANN technique

    Get PDF
    Abstract: Orthogonal frequency division multiplexer (OFDM) is a recent modulation scheme used to transmit signals across power line communication (PLC) channel due to its robustness against some known PLC problems. However, this scheme is greatly affected by the impulsive noise (IN) and often causes corruption with the transmitted bits. Different impulsive noise error correcting methods have been introduced and used to remove impulsive noise in OFDM systems. However, these techniques suffer some limitations and require much signal to noise ratio (SNR) power to operate. In this paper, an approach of designing an effective impulsive-noise error-correcting technique was introduced using three-known artificial neural network techniques (Levenberg-Marquardt, Scaled conjugate gradient, and Bayesian regularization). Findings suggest that both Bayesian regularization and Levenberg-Marquardt ANN techniques can be used to effectively remove the impulsive noise present in an OFDM channel and using the least SNR power
    • …
    corecore