66 research outputs found

    Win Prediction in Esports: Mixed-Rank Match Prediction in Multi-player Online Battle Arena Games

    Get PDF
    Esports has emerged as a popular genre for players as well as spectators, supporting a global entertainment industry. Esports analytics has evolved to address the requirement for data-driven feedback, and is focused on cyber-athlete evaluation, strategy and prediction. Towards the latter, previous work has used match data from a variety of player ranks from hobbyist to professional players. However, professional players have been shown to behave differently than lower ranked players. Given the comparatively limited supply of professional data, a key question is thus whether mixed-rank match datasets can be used to create data-driven models which predict winners in professional matches and provide a simple in-game statistic for viewers and broadcasters. Here we show that, although there is a slightly reduced accuracy, mixed-rank datasets can be used to predict the outcome of professional matches, with suitably optimized configurations

    Predicting Win Rates in Competitive OverwatchTM

    Get PDF
    OverwatchTM is a video game published by Blizzard Entertainment R where two teams comprised of six people each compete against one another to accomplish a specific goal. The goal of each game is dependent on which map is being played. The maps are divided into four categories: Assault, Escort, Control, and Hybrid. A data set comprised of 3000 games of competitive OverwatchTM is used to determine how likely a team is to win their match. The factors used to determine the likelihood of winning are the map type and the skill ranking for each team. The data set is pre-processed by standardizing and encoding the data through Python. After the data is encoded, 80% of the data is divided into a training set and 20% of the data is divided into a testing set. Classification algorithms are tested against the data to determine which classifying method returns the highest accuracy. After using the training set, the Bagging Classifier shows the highest accuracy when compared to the testing set

    Beyond the Meta: Leveraging Game Design Parameters for Patch-Agnostic Esport Analytics

    Full text link
    Esport games comprise a sizeable fraction of the global games market, and is the fastest growing segment in games. This has given rise to the domain of esports analytics, which uses telemetry data from games to inform players, coaches, broadcasters and other stakeholders. Compared to traditional sports, esport titles change rapidly, in terms of mechanics as well as rules. Due to these frequent changes to the parameters of the game, esport analytics models can have a short life-spam, a problem which is largely ignored within the literature. This paper extracts information from game design (i.e. patch notes) and utilises clustering techniques to propose a new form of character representation. As a case study, a neural network model is trained to predict the number of kills in a Dota 2 match utilising this novel character representation technique. The performance of this model is then evaluated against two distinct baselines, including conventional techniques. Not only did the model significantly outperform the baselines in terms of accuracy (85% AUC), but the model also maintains the accuracy in two newer iterations of the game that introduced one new character and a brand new character type. These changes introduced to the design of the game would typically break conventional techniques that are commonly used within the literature. Therefore, the proposed methodology for representing characters can increase the life-spam of machine learning models as well as contribute to a higher performance when compared to traditional techniques typically employed within the literature

    Narrative Bytes : Data-Driven Content Production in Esports

    Get PDF
    Esports - video games played competitively that are broadcast to large audiences - are a rapidly growing new form of mainstream entertainment. Esports borrow from traditional TV, but are a qualitatively different genre, due to the high flexibility of content capture and availability of detailed gameplay data. Indeed, in esports, there is access to both real-time and historical data about any action taken in the virtual world. This aspect motivates the research presented here, the question asked being: can the information buried deep in such data, unavailable to the human eye, be unlocked and used to improve the live broadcast compilations of the events? In this paper, we present a large-scale case study of a production tool called Echo, which we developed in close collaboration with leading industry stakeholders. Echo uses live and historic match data to detect extraordinary player performances in the popular esport Dota 2, and dynamically translates interesting data points into audience-facing graphics. Echo was deployed at one of the largest yearly Dota 2 tournaments, which was watched by 25 million people. An analysis of 40 hours of video, over 46,000 live chat messages, and feedback of 98 audience members showed that Echo measurably affected the range and quality of storytelling, increased audience engagement, and invoked rich emotional response among viewers
    • …
    corecore