2,012 research outputs found

    Performance of MIMO downlink WiMAX at application layer

    Get PDF

    Cross layer interaction for IP centric video applications in MIMO broadband wireless networks

    Get PDF

    Mobile WiMAX: multi-cell network evaluation and capacity optimization

    Get PDF

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    Mobile WiMAX system performance – simulated versus experimental results

    Get PDF
    This paper addresses the downlink performance of mobile WiMAX operating at 2.3GHz in an urban environment. The analysis includes a comparison of simulated and experimental results. Simulated packet error rate (PER) versus Signal to Noise Ratio (SNR) graphs are generated on a per link-speed basis using a fully compliant 512 carrier mobile WiMAX simulator. Experimental data is gathered using a carrier-class basestation, a mobile-WiMAX enabled laptop, and a suite of application layer logging software. An H264 AVC encoder and IP packetisation unit is used to transmit video to a mobile client. Results show strong agreement in terms of simulated and captured PER. Using this data, the downlink operating range is evaluated as a function of the Effective Isotropic Radiated Power (EIRP) and path loss exponent. Results indicate that at low EIRP (32 dBm) the expected outdoor operating range is around 200-400m. Applying the UK OFCOM regulations for licensed operation in the 2.5GHz band, downlink operation in excess of 2km can be achieved

    Characteristics of chicken slaughterhouse wastewater

    Get PDF
    The chicken slaughterhouse wastewater is a class of wastewater, which is heavily polluted with organic matters including proteins, blood residues, fats and lard. Therefore, the direct discharged of untreated chicken slaughterhouse wastewater into the environment is associated with the occurrence of eutrophication phenomenon. In the present study, the characteristics of chicken slaughterhouse wastewater were investigated to ascertain the role of these wastes in the adverse effect on the environment and natural water system. The parameter tested included biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), total nitrogen (TN), total organic carbon (TOC), orthophosphate (PO4 3-), temperature and pH. The results revealed available high concentrations of BOD (1,341 - 1,821 ± 242.7 mg L1 ), COD (3,154.19 - 7,719.3 ± 2,282.69 mg L-1), TSS (377.67 - 5,462 ± 2,696.1 mg L-1) which have exceeded the EQA1974 standard limits for disposal of wastewater into the environment. The concentrations of TN (162.6 -563.8 ± 215 mg L-1) and PO4 3- (7.047 - 17.111 ± 4.25 mg L-1) were within the range required for microalgae growth which confirm their role in the occurrence of eutrophication phenomenon. It can be concluded that the direct discharge of chicken slaughterhouse wastewater contributes negatively on the environmental biodiversity and thus they should be subjected for an effective treated before the final disposal

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Performance evaluation of mobile WiMAX with MIMO and relay extensions

    Get PDF
    • …
    corecore