1,392 research outputs found

    On Macroscopic Complexity and Perceptual Coding

    Full text link
    The theoretical limits of 'lossy' data compression algorithms are considered. The complexity of an object as seen by a macroscopic observer is the size of the perceptual code which discards all information that can be lost without altering the perception of the specified observer. The complexity of this macroscopically observed state is the simplest description of any microstate comprising that macrostate. Inference and pattern recognition based on macrostate rather than microstate complexities will take advantage of the complexity of the macroscopic observer to ignore irrelevant noise

    A bag of words description scheme for image quality assessment

    Get PDF
    Every day millions of images are obtained, processed, compressed, saved, transmitted and reproduced. All these operations can cause distortions that affect their quality. The quality of these images should be measured subjectively. However, that brings the disadvantage of achieving a considerable number of tests with individuals requested to provide a statistical analysis of an image’s perceptual quality. Several objective metrics have been developed, that try to model the human perception of quality. However, in most applications the representation of human quality perception given by these metrics is far from the desired representation. Therefore, this work proposes the usage of machine learning models that allow for a better approximation. In this work, definitions for image and quality are given and some of the difficulties of the study of image quality are mentioned. Moreover, three metrics are initially explained. One uses the image’s original quality has a reference (SSIM) while the other two are no reference (BRISQUE and QAC). A comparison is made, showing a large discrepancy of values between the two kinds of metrics. The database that is used for the tests is TID2013. This database was chosen due to its dimension and by the fact of considering a large number of distortions. A study of each type of distortion in this database is made. Furthermore, some concepts of machine learning are introduced along with algorithms relevant in the context of this dissertation, notably, K-means, KNN and SVM. Description aggregator algorithms like “bag of words” and “fisher-vectors” are also mentioned. This dissertation studies a new model that combines machine learning and a quality metric for quality estimation. This model is based on the division of images in cells, where a specific metric is computed. With this division, it is possible to obtain local quality descriptors that will be aggregated using “bag of words”. A SVM with an RBF kernel is trained and tested on the same database and the results of the model are evaluated using cross-validation. The results are analysed using Pearson, Spearman and Kendall correlations and the RMSE to evaluate the representation of the model when compared with the subjective results. The model improves the results of the metric that was used and shows a new path to apply machine learning for quality evaluation.No nosso dia-a-dia as imagens são obtidas, processadas, comprimidas, guardadas, transmitidas e reproduzidas. Em qualquer destas operações podem ocorrer distorções que prejudicam a sua qualidade. A qualidade destas imagens pode ser medida de forma subjectiva, o que tem a desvantagem de serem necessários vários testes, a um número considerável de indivíduos para ser feita uma análise estatística da qualidade perceptual de uma imagem. Foram desenvolvidas várias métricas objectivas, que de alguma forma tentam modelar a percepção humana de qualidade. Todavia, em muitas aplicações a representação de percepção de qualidade humana dada por estas métricas fica aquém do desejável, razão porque se propõe neste trabalho usar modelos de reconhecimento de padrões que permitam uma maior aproximação. Neste trabalho, são dadas definições para imagem e qualidade e algumas das dificuldades do estudo da qualidade de imagem são referidas. É referida a importância da qualidade de imagem como ramo de estudo, e são estudadas diversas métricas de qualidade. São explicadas três métricas, uma delas que usa a qualidade original como referência (SSIM) e duas métricas sem referência (BRISQUE e QAC). Uma comparação é feita entre elas, mostrando- – se uma grande discrepância de valores entre os dois tipos de métricas. Para os testes feitos é usada a base de dados TID2013, que é muitas vezes considerada para estudos de qualidade de métricas devido à sua dimensão e ao facto de considerar um grande número de distorções. Neste trabalho também se fez um estudo dos tipos de distorção incluidos nesta base de dados e como é que eles são simulados. São introduzidos também alguns conceitos teóricos de reconhecimento de padrões e alguns algoritmos relevantes no contexto da dissertação, são descritos como o K-means, KNN e as SVMs. Algoritmos de agregação de descritores como o “bag of words” e o “fisher-vectors” também são referidos. Esta dissertação adiciona métodos de reconhecimento de padrões a métricas objectivas de qua– lidade de imagem. Uma nova técnica é proposta, baseada na divisão de imagens em células, nas quais uma métrica será calculada. Esta divisão permite obter descritores locais de qualidade que serão agregados usando “bag of words”. Uma SVM com kernel RBF é treinada e testada na mesma base de dados e os resultados do modelo são mostrados usando cross-validation. Os resultados são analisados usando as correlações de Pearson, Spearman e Kendall e o RMSE que permitem avaliar a proximidade entre a métrica desenvolvida e os resultados subjectivos. Este modelo melhora os resultados obtidos com a métrica usada e demonstra uma nova forma de aplicar modelos de reconhecimento de padrões ao estudo de avaliação de qualidade

    PEA265: Perceptual Assessment of Video Compression Artifacts

    Full text link
    The most widely used video encoders share a common hybrid coding framework that includes block-based motion estimation/compensation and block-based transform coding. Despite their high coding efficiency, the encoded videos often exhibit visually annoying artifacts, denoted as Perceivable Encoding Artifacts (PEAs), which significantly degrade the visual Qualityof- Experience (QoE) of end users. To monitor and improve visual QoE, it is crucial to develop subjective and objective measures that can identify and quantify various types of PEAs. In this work, we make the first attempt to build a large-scale subjectlabelled database composed of H.265/HEVC compressed videos containing various PEAs. The database, namely the PEA265 database, includes 4 types of spatial PEAs (i.e. blurring, blocking, ringing and color bleeding) and 2 types of temporal PEAs (i.e. flickering and floating). Each containing at least 60,000 image or video patches with positive and negative labels. To objectively identify these PEAs, we train Convolutional Neural Networks (CNNs) using the PEA265 database. It appears that state-of-theart ResNeXt is capable of identifying each type of PEAs with high accuracy. Furthermore, we define PEA pattern and PEA intensity measures to quantify PEA levels of compressed video sequence. We believe that the PEA265 database and our findings will benefit the future development of video quality assessment methods and perceptually motivated video encoders.Comment: 10 pages,15 figures,4 table

    Advanced solutions for quality-oriented multimedia broadcasting

    Get PDF
    Multimedia content is increasingly being delivered via different types of networks to viewers in a variety of locations and contexts using a variety of devices. The ubiquitous nature of multimedia services comes at a cost, however. The successful delivery of multimedia services will require overcoming numerous technological challenges many of which have a direct effect on the quality of the multimedia experience. For example, due to dynamically changing requirements and networking conditions, the delivery of multimedia content has traditionally adopted a best effort approach. However, this approach has often led to the end-user perceived quality of multimedia-based services being negatively affected. Yet the quality of multimedia content is a vital issue for the continued acceptance and proliferation of these services. Indeed, end-users are becoming increasingly quality-aware in their expectations of multimedia experience and demand an ever-widening spectrum of rich multimedia-based services. As a consequence, there is a continuous and extensive research effort, by both industry and academia, to find solutions for improving the quality of multimedia content delivered to the users; as well, international standards bodies, such as the International Telecommunication Union (ITU), are renewing their effort on the standardization of multimedia technologies. There are very different directions in which research has attempted to find solutions in order to improve the quality of the rich media content delivered over various network types. It is in this context that this special issue on broadcast multimedia quality of the IEEE Transactions on Broadcasting illustrates some of these avenues and presents some of the most significant research results obtained by various teams of researchers from many countries. This special issue provides an example, albeit inevitably limited, of the richness and breath of the current research on multimedia broadcasting services. The research i- - ssues addressed in this special issue include, among others, factors that influence user perceived quality, encoding-related quality assessment and control, transmission and coverage-based solutions and objective quality measurements
    • …
    corecore