463 research outputs found

    LDPC Code Design for Noncoherent Physical Layer Network Coding

    Full text link
    This work considers optimizing LDPC codes in the physical-layer network coded two-way relay channel using noncoherent FSK modulation. The error-rate performance of channel decoding at the relay node during the multiple-access phase was improved through EXIT-based optimization of Tanner graph variable node degree distributions. Codes drawn from the DVB-S2 and WiMAX standards were used as a basis for design and performance comparison. The computational complexity characteristics of the standard codes were preserved in the optimized codes by maintaining the extended irregular repeat-accumulate (eIRA). The relay receiver performance was optimized considering two modulation orders M = {4, 8} using iterative decoding in which the decoder and demodulator refine channel estimates by exchanging information. The code optimization procedure yielded unique optimized codes for each case of modulation order and available channel state information. Performance of the standard and optimized codes were measured using Monte Carlo simulation in the flat Rayleigh fading channel, and error rate improvements up to 1.2 dB are demonstrated depending on system parameters.Comment: Six pages, submitted to 2015 IEEE International Conference on Communication

    Optimized Bit Mappings for Spatially Coupled LDPC Codes over Parallel Binary Erasure Channels

    Full text link
    In many practical communication systems, one binary encoder/decoder pair is used to communicate over a set of parallel channels. Examples of this setup include multi-carrier transmission, rate-compatible puncturing of turbo-like codes, and bit-interleaved coded modulation (BICM). A bit mapper is commonly employed to determine how the coded bits are allocated to the channels. In this paper, we study spatially coupled low-density parity check codes over parallel channels and optimize the bit mapper using BICM as the driving example. For simplicity, the parallel bit channels that arise in BICM are replaced by independent binary erasure channels (BECs). For two parallel BECs modeled according to a 4-PAM constellation labeled by the binary reflected Gray code, the optimization results show that the decoding threshold can be improved over a uniform random bit mapper, or, alternatively, the spatial chain length of the code can be reduced for a given gap to capacity. It is also shown that for rate-loss free, circular (tail-biting) ensembles, a decoding wave effect can be initiated using only an optimized bit mapper

    Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments

    Get PDF
    In this paper, we compare different metrics to predict the error rate of optical systems based on nonbinary forward error correction (FEC). It is shown that the correct metric to predict the performance of coded modulation based on nonbinary FEC is the mutual information. The accuracy of the prediction is verified in a detailed example with multiple constellation formats, FEC overheads in both simulations and optical transmission experiments over a recirculating loop. It is shown that the employed FEC codes must be universal if performance prediction based on thresholds is used. A tutorial introduction into the computation of the threshold from optical transmission measurements is also given.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog
    • …
    corecore