6,315 research outputs found

    Design and application of electromechanical actuators for deep space missions

    Get PDF
    During the period 8/16/92 through 2/15/93, work has been focused on three major topics: (1) screw modeling and testing; (2) motor selection; and (3) health monitoring and fault diagnosis. Detailed theoretical analysis has been performed to specify a full dynamic model for the roller screw. A test stand has been designed for model parameter estimation and screw testing. In addition, the test stand is expected to be used to perform a study on transverse screw loading

    Testing a satellite automatic nutation control system

    Get PDF
    Testing of a particular nutation control system for the synchronous meteorological satellite (SMS) is described. The test method and principles are applicable to nutation angle control for other satellites with similar requirements. During its ascent to synchronous orbit, a spacecraft like the SMS spins about its minimum-moment-of-inertia axis. An uncontrolled spacecraft in this state is unstable because torques due to fuel motion increase the nutation angle. However, the SMS is equipped with an automatic nutation control (ANC) system which will keep the nutation angle close to zero. Because correct operation of this system is critical to mission success, it was tested on an air-bearing table. The ANC system was mounted on the three-axis air-bearing table which was scaled to the SMS and equipped with appropriate sensors and thrusters. The table was spun up in an altitude chamber and nutation induced so that table motion simulated spacecraft motion. The ANC system was used to reduce the nutation angle. This dynamic test of the ANC system met all its objectives and provided confidence that the ANC system will control the SMS nutation angle

    Advanced gearbox technology

    Get PDF
    An advanced 13,000 HP, counterrotating (CR) gearbox was designed and successfully tested to provide a technology base for future designs of geared propfan propulsion systems for both commercial and military aircraft. The advanced technology CR gearbox was designed for high efficiency, low weight, long life, and improved maintainability. The differential planetary CR gearbox features double helical gears, double row cylindrical roller bearings integral with planet gears, tapered roller prop support bearings, and a flexible ring gear and diaphragm to provide load sharing. A new Allison propfan back-to-back gearbox test facility was constructed. Extensive rotating and stationary instrumentation was used to measure temperature, strain, vibration, deflection and efficiency under representative flight operating conditions. The tests verified smooth, efficient gearbox operation. The highly-instrumented advanced CR gearbox was successfully tested to design speed and power (13,000 HP), and to a 115 percent overspeed condition. Measured CR gearbox efficiency was 99.3 percent at the design point based on heat loss to the oil. Tests demonstrated low vibration characteristics of double helical gearing, proper gear tooth load sharing, low stress levels, and the high load capacity of the prop tapered roller bearings. Applied external prop loads did not significantly affect gearbox temperature, vibration, or stress levels. Gearbox hardware was in excellent condition after the tests with no indication of distress

    Peak wind speed anemometers /maxometer/ Final report, 26 Mar. 1969 - 25 May 1970

    Get PDF
    Fabrication and testing of peak wind speed recording devic

    Energy dissipation prediction of particle dampers

    Get PDF
    This paper presents initial work on developing models for predicting particle dampers (PDs) behaviour using the Discrete Element Method (DEM). In the DEM approach, individual particles are typically represented as elements with mass and rotational inertia. Contacts between particles and with walls are represented using springs, dampers and sliding friction interfaces. In order to use DEM to predict damper behaviour adequately, it is important to identify representative models of the contact conditions. It is particularly important to get the appropriate trade-off between accuracy and computational efficiency as PDs have so many individual elements. In order to understand appropriate models, experimental work was carried out to understand interactions between the typically small (1.5–3 mm diameter) particles used. Measurements were made of coefficient of restitution and interface friction. These were used to give an indication of the level of uncertainty that the simplest (linear) models might assume. These data were used to predict energy dissipation in a PD via a DEM simulation. The results were compared with that of an experiment

    Solar array deployment mechanism

    Get PDF
    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements

    Design and optimization of large stroke flexure mechanisms

    Get PDF

    Miniature Wire Boom System for Cubsat Application

    Get PDF
    Small satellites and especially CubeSats are becoming more widely used to study the space environment. The Ionosphere is one region of particular interest, more specifically the altitude region of 85 km to 600 km. Small satellites are particularly useful for studying this region of the Earth’s atmosphere since the effects of aerodynamic drag on a CubeSat are much less than those on a larger more traditional satellite, thus the lifespan of a CubeSat in this region is much longer. In order to observe the electric field in space, the electric potential between various points needs to be measured. These measurements are most effectively taken when the sensors are located several meters from one another. A deployment mechanism is needed in order to position the sensors at these distances. A miniature wire boom deployment system was developed by Utah State University and the Space Dynamics Laboratory in Logan, Utah which accomplishes this task. The deployment system is capable of deploying sensors up to 5 meters in 4 directions using a piezoelectric motor controlled mechanism. This system conforms to all CubeSat specifications and is modular so it can be integrated into any CubeSat application. Recently this miniature wire boom deployment system was integrated into the two satellites of the DICE program

    The Penn Jerboa: A Platform for Exploring Parallel Composition of Templates

    Get PDF
    We have built a 12DOF, passive-compliant legged, tailed biped actuated by four brushless DC motors. We anticipate that this machine will achieve varied modes of quasistatic and dynamic balance, enabling a broad range of locomotion tasks including sitting, standing, walking, hopping, running, turning, leaping, and more. Achieving this diversity of behavior with a single under-actuated body, requires a correspondingly diverse array of controllers, motivating our interest in compositional techniques that promote mixing and reuse of a relatively few base constituents to achieve a combinatorially growing array of available choices. Here we report on the development of one important example of such a behavioral programming method, the construction of a novel monopedal sagittal plane hopping gait through parallel composition of four decoupled 1DOF base controllers. For this example behavior, the legs are locked in phase and the body is fastened to a boom to restrict motion to the sagittal plane. The platform's locomotion is powered by the hip motor that adjusts leg touchdown angle in flight and balance in stance, along with a tail motor that adjusts body shape in flight and drives energy into the passive leg shank spring during stance. The motor control signals arise from the application in parallel of four simple, completely decoupled 1DOF feedback laws that provably stabilize in isolation four corresponding 1DOF abstract reference plants. Each of these abstract 1DOF closed loop dynamics represents some simple but crucial specific component of the locomotion task at hand. We present a partial proof of correctness for this parallel composition of template reference systems along with data from the physical platform suggesting these templates are anchored as evidenced by the correspondence of their characteristic motions with a suitably transformed image of traces from the physical platform.Comment: Technical Report to Accompany: A. De and D. Koditschek, "Parallel composition of templates for tail-energized planar hopping," in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015. v2: Used plain latex article, correct gap radius and specific force/torque number
    • …
    corecore