165 research outputs found

    Would Current Ad Hoc Routing Protocols be Adequate for the Internet of Vehicles? A Comparative Study

    Get PDF
    In recent years we have seen a great proliferation of smart vehicles, ranging from cars to little drones (both terrestrial and aerial), all endowed with sensors and communication capabilities. It is hence easy to foresee a future with even more smart and connected vehicles moving around, occupying space and creating an Internet of Vehicles (IoV). In this IoV, a multitude of nodes (both static and mobile) will generate a continuous multihop flow of local information to support local smart environment applications. Therefore, one interesting environment for the IoV would be in the form of 3-D mobile ad-hoc networks (MANETs). Unfortunately, MANET routing protocols have generally been designed and analyzed keeping in mind a 2-D scenario; there is no guarantee on how they would support a 3-D topology of the IoV. To this end, we have considered routing protocols deemed as the state-of-the-art for classic MANETs and tested them over 3-D topologies to evaluate their assets and technical challenges

    Environmentally-Aware and Energy-Efficient Multi-Drone Coordination and Networking for Disaster Response

    Get PDF
    In a Disaster Response Management (DRM) Scenario, Communication and Coordination Are Limited, and Absence of Related Infrastructure Hinders Situational Awareness. Unmanned Aerial Vehicles (UAVs) or Drones Provide New Capabilities for DRM to Address These Barriers. However, There is a Dearth of Works that Address Multiple Heterogeneous Drones Collaboratively Working Together to Form a Flying Ad-Hoc Network (FANET) with Air-To-Air and Air-To-Ground Links that Are Impacted By: (I) Environmental Obstacles, (Ii) Wind, and (Iii) Limited Battery Capacities. in This Paper, We Present a Novel Environmentally-Aware and Energy-Efficient Multi-Drone Coordination and Networking Scheme that Features a Reinforcement Learning (RL) based Location Prediction Algorithm Coupled with a Packet Forwarding Algorithm for Drone-To-Ground Network Establishment. We Specifically Present Two Novel Drone Location-Based Solutions (I.e., Heuristic Greedy, and Learning-Based) in Our Packet Forwarding Approach to Support Application Requirements. These Requirements Involve Improving Connectivity (I.e., Optimize Packet Delivery Ratio and End-To-End Delay) Despite Environmental Obstacles, and Improving Efficiency (I.e., by Lower Energy Use and Time Consumption) Despite Energy Constraints. We Evaluate Our Scheme with State-Of-The-Art Networking Algorithms in a Trace-Based DRM FANET Simulation Testbed Featuring Rural and Metropolitan Areas. Results Show that Our Strategy overcomes Obstacles and Can Achieve 81-To-90% of Network Connectivity Performance Observed under No Obstacle Conditions. in the Presence of Obstacles, Our Scheme Improves the Network Connectivity Performance by 14-To-38% While Also Providing 23-To-54% of Energy Savings in Rural Areas; the Same in Metropolitan Areas Achieved an Average of 25% Gain When Compared with Baseline Obstacle Awareness Approaches with 15-To-76% of Energy Savings

    Data Gathering and Dissemination over Flying Ad-hoc Networks in Smart Environments

    Get PDF
    The advent of the Internet of Things (IoT) has laid the foundations for new possibilities in our life. The ability to communicate with any electronic device has become a fascinating opportunity. Particularly interesting are UAVs (Unmanned Airborne Vehicles), autonomous or remotely controlled flying devices able to operate in many contexts thanks to their mobility, sensors, and communication capabilities. Recently, the use of UAVs has become an important asset in many critical and common scenarios; thereby, various research groups have started to consider UAVs’ potentiality applied on smart environments. UAVs can communicate with each other forming a Flying Ad-hoc Network (FANET), in order to provide complex services that requires the coordination of several UAVs; yet, this also generates challenging communication issues. This dissertation starts from this standpoint, firstly focusing on networking issues and potential solutions already present in the state-of-the-art. To this aim, the peculiar issues of routing in mobile, 3D shaped ad-hoc networks have been investigated through a set of simulations to compare different ad-hoc routing protocols and understand their limits. From this knowledge, our work takes into consideration the differences between classic MANETs and FANETs, highlighting the specific communication performance of UAVs and their specific mobility models. Based on these assumptions, we propose refinements and improvements of routing protocols, as well as their linkage with actual UAV-based applications to support smart services. Particular consideration is devoted to Delay/Disruption Tolerant Networks (DTNs), characterized by long packet delays and intermittent connectivity, a critical aspect when UAVs are involved. The goal is to leverage on context-aware strategies in order to design more efficient routing solutions. The outcome of this work includes the design and analysis of new routing protocols supporting efficient UAVs’ communication with heterogeneous smart objects in smart environments. Finally, we discuss about how the presence of UAV swarms may affect the perception of population, providing a critical analysis of how the consideration of these aspects could change a FANET communication infrastructure

    Internet of Unmanned Aerial Vehicles: QoS Provisioning in Aerial Ad-Hoc Networks

    Get PDF
    Aerial ad-hoc networks have the potential to enable smart services while maintaining communication between the ground system and unmanned aerial vehicles (UAV). Previous research has focused on enabling aerial data-centric smart services while integrating the benefits of aerial objects such as UAVs in hostile and non-hostile environments. Quality of service (QoS) provisioning in UAV-assisted communication is a challenging research theme in aerial ad-hoc networks environments. Literature on aerial ad hoc networks lacks cooperative service-oriented modeling for distributed network environments, relying on costly static base station-oriented centralized network environments. Towards this end, this paper proposes a quality of service provisioning framework for a UAV-assisted aerial ad hoc network environment (QSPU) focusing on reliable aerial communication. The UAV’s aerial mobility and service parameters are modelled considering highly dynamic aerial ad-hoc environments. UAV-centric mobility models are utilized to develop a complete aerial routing framework. A comparative performance evaluation demonstrates the benefits of the proposed aerial communication framework. It is evident that QSPU outperforms the state-of-the-art techniques in terms of a number of service-oriented performance metrics in a UAV-assisted aerial ad-hoc network environment

    Survey and Review on Various Topology and Geographical based Routing Protocol Parameters to Ensure the QOS Parameters of VANET

    Get PDF
    Vehicular Ad Hoc Network (VANET) is a type of wireless network that allows communication between vehicles and infrastructure. One of the critical considerations in VANET is Quality of Service (QoS) parameters, which determine the network's performance. The effective management of QoS parameters is essential for VANET's reliable and efficient operation. In this research paper, we aim to explore topology-based and geographical-based routing protocol parameters to ensure QoS parameters in VANET. The former uses the network topology to make routing decisions, while the latter uses the location information of vehicles.  We will first provide an overview of VANET and QoS parameters. Then, we will delve into the key parameters of topology-based and geographical-based routing protocols and how they affect QoS. We will also survey and review the existing routing protocols and parameter values used in these protocols. The findings of this research paper will provide insights into the effective management of QoS parameters in VANET and contribute to the development of more efficient routing protocols

    Routing protocols in dynamic networks

    Get PDF
    In this work we implemented two protocols that are optimal with respect to the metrics that they optimize: one protocol minimizes the number of hops to reach the destination while the other one maximizes the transmission rate. Then, we compared them through end-to-end delay. Then in the second part we implemented two algorithms to maximize the number of covered users. One solves an optimization problem while the other one computes the density map using convolution

    Efficient Topology Management and Geographic Routing in High-Capacity Continental-Scale Airborne Networks

    Get PDF
    Large-scale high-capacity communication networks among mobile airborne platforms are quickly becoming a reality. Today, both Google and Facebook are seeking to form networks among high-flying balloons and drones in an effort to provide Internet connections from the stratosphere to users on the ground. This dissertation proposes an alternative, namely using the cargo and passenger aircraft already in the skies as the principal components of such a network. My work presents the design of a network architecture to overcome the challenges of managing the topology of and routing data within these continental-scale highly-dynamic networks. The architecture relies on directional communication links, such as free-space optical communication links (FSO), to achieve high data rates over long distances. However, these state-of-the-art communication systems present new networking challenges. One such challenge is that of managing the physical topology of the network. Such a topology must be explicitly managed, ensuring that each directional data link is pointed at and connected with an appropriate neighbor (which is also pointing back) to yield an acceptable global topology. To overcome this challenge, a distributed topology management framework and associated topology generation algorithms were designed, implemented, and tested via simulation. The framework is capable of managing the topology of thousands of nodes in a continental-scale airborne network and has no communication overhead except that required to exchange position information among nearby nodes. A second component of the work concerns routing data at high data rates through a constantly changing network topology. To address this issue Topology Aware Geographic Routing (TAG), a position-based routing protocol was developed that strategically uses local topology information to make better local forwarding decisions, decreasing the number of hops required to deliver a packet, when compared with other geographic routing protocols. In addition, unlike other similar protocols, TAG is able to reliably deliver packets even when the topology changes while the packet is in flight. These protocols are tested and validated in a series of simulations where nodes trace the trajectories recorded from thousands of actual flights. These simulations indicate that the topology management framework and TAG are able to perform well in large-scale high-density conditions, over long durations, and are able to support tens of thousands of 1 Mbps flows.Doctor of Philosoph

    End-to-end delay analysis for routing protocols in VANETs

    Get PDF
    Vehicular ad-hoc network (VANET) technology enables communication between vehicles, or vehicles and road-side units (RSUs) through wireless communication devices installed on the vehicles. One of the most important goals of VANETs is providing safety applications for passengers. In addition, VANETs provide comfort applications to users. Guaranteeing a reliable and stable routing protocol over VANETs is a very important step. The proposed research attempts to improve routing protocols that decrease the end-to-end delay to suit VANET communication characteristics. In addition, it proposes analysis of the end-to-end delay probability distribution. More specifically, we derive a closed-form expression for the probability distribution of the re-healing delay in a VANET conditioned on the distance between two VANET clusters. Furthermore, we propose a closed-form expression for the probability distribution of the unconditional re-healing delay. Moreover, we develop a mathematical model to calculate the probability distribution of the end-to-end delay. On the other hand, using Unmanned Aerial Vehicles (UAVs) or drones in wireless communications and Vehicular Ad-hoc Networks (VANETs) has started to attract attention. We propose a routing protocol that uses infrastructure drones for boosting VANET communications to achieve a minimum vehicle-to-drone packet delivery delay. In addition, we propose a closed-form expression for the probability distribution of the vehicle-to-drone packet delivery delay on a two-way highway. Moreover, based on that closed-form expression, we can calculate the minimum drone density (maximum separation distance between two adjacent drones) that stochastically limits the worst case of the vehicle-to-drone packet delivery delay. Furthermore, we propose a drones-active service (DAS) that is added to the location service in a VANET. This service dynamically and periodically obtains the required number of active drones based on the current highway connectivity state by obtaining the maximum distance between each two adjacent drones while satisfying a probabilistic constraint for vehicle-todrone packet delivery delay. Our analysis focuses on two-way highway VANET networks with low vehicular density. The simulation results show the accuracy of our analysis and reflect the relation between the drone density, vehicular density and speed, other VANET parameters, and the vehicle-to-drone packet delivery delay. In addition, we propose a new routing protocol called multi-copy intersection-based routing (MCIR) for vehicular ad-hoc networks (VANETs) in urban areas. MCIR is an intersectionbased routing protocol that forwards multiple copies of the packets in different road segments. Moreover, it is a beacon-less routing protocol with a carry-and-forward strategy. We show via simulation that the MCIR protocol is superior to other existing routing protocols, especially in low vehicular density scenarios. The results show that MCIR achieves a shorter end-to-end delay and a higher packet delivery ratio in urban VANET communications
    • …
    corecore